Skip to main content

Interconnects for Solid Oxide Fuel Cells

Part of the CISM International Centre for Mechanical Sciences book series (CISM,volume 574)

Abstract

Interconnect materials serve an important role in solid oxide fuel cell (SOFC) technology, connecting the current collectors of each cell to either the next one or the electrical load. Up to date, two types of interconnects have been developed: (i) the ceramic and (ii) the metallic ones. The ceramic interconnects are oxides, which are very stable in oxidizing atmosphere, but their cost is high and they exhibit lower electrical conductivity in comparison with the metallic ones at the operating temperatures. The most studied ceramic interconnects are lanthanum and yttrium chromites, and perovskite p-type semiconductors. Currently, ceramic conductive materials are widely used as thin protective layers deposited on metallic interconnects. The metallic interconnects are cheaper than the ceramic ones, and they are used at lower operating temperatures. Compared with ceramics, they exhibit higher electronic conductivity, but they are not stable in oxidizing atmospheres. During the last decade, several solutions have been approached, predominating the surface modification of the metallic interconnects via protective oxide layers (ceramic one) deposition on them. This alternative approach increases the lifetime of metallic interconnects, especially under cathode conditions. Reactive element oxides, perovskites, spinels, and dual layers are the kind of coatings that have also been developed.

Keywords

  • Thermal Expansion Coefficient
  • Oxide Scale
  • Solid Oxide Fuel Cell
  • Ferritic Stainless Steel
  • Lanthanum Strontium Manganite

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abiko, K. (1997). The evolution of iron. Physica Status Solidi A, 160, 285–296.

    CrossRef  Google Scholar 

  • Ajitdoss, L. C., Smeacetto, F., Bindi, M., Beretta, D., Salvo, M., & Ferraris, M. (2013). Mn1.5Co1.5O4 protective coating on Crofer22APU produced by thermal co-evaporation for SOFCs. Materials Letters, 95, 82–85.

    CrossRef  Google Scholar 

  • Ardigo, M. R., Popa, I., Combemale, L., Chevalier, S., Herbst, F., & Girardon, P. (2015). Dual atmosphere study of the K41X stainless steel for interconnect application in high temperature water vapour electrolysis. International Journal of Hydrogen Energy, 40, 5305–5312.

    CrossRef  Google Scholar 

  • Armstrong, T. R., Stevenson, J. W., McCready, D. E., Paulik, S. W., & Raney, P. E. (1996). The effect of reducing environments on the stability of acceptor substituted yttrium chromite. Solid State Ionics, 92, 213–223.

    CrossRef  Google Scholar 

  • Bateni, M. R., Wei, P., Deng, X., & Petric, A. (2007). Spinel coatings for UNS 430 stainless steel interconnects. Surface and Coatings Technology, 201, 4677–4684.

    CrossRef  Google Scholar 

  • Brylewski, T., Dabek, J., Przybylski, K., Morgiel, J., & Rekas, M. (2012). Screen-printed (La, Sr)CrO3 coatings on ferritic stainless steel interconnects for solid oxide fuel cells using nanopowders prepared by means of ultrasonic spray pyrolysis. Journal of Power Sources, 208, 86–95.

    CrossRef  Google Scholar 

  • Chen, G., Xin, X., Luo, T., Liu, L., Zhou, Y., Yuan, C., et al. (2015). Mn1.4Co1.4Cu0.2O4 spinel protective coating on ferritic stainless steels for solid oxide fuel cell interconnect applications. Journal of Power Sources, 278, 230–234.

    CrossRef  Google Scholar 

  • Chen, X., Hou, P. Y., Jacobson, C. P., Visco, S. J., & De Jonghe, L. C. (2005a). Protective coating on stainless steel interconnect for SOFCs: Oxidation kinetics and electrical properties. Solid State Ionics, 176, 425–433.

    CrossRef  Google Scholar 

  • Chen, X., Huang, K., & Xu, X. B. (2005b). Automated design of a three-dimensional fishbone antenna using parallel genetic algorithm and NEC. IEEE Antennas and Wireless Propagation Letters, 4, 425–428.

    CrossRef  Google Scholar 

  • Chen, X., Zhang, L., Liu, E., & Jiang, S. P. (2011). A fundamental study of chromium deposition and poisoning at (La0.8Sr0.2)0.95(Mn1−xCox)O3±δ (0.0 ≤ x ≤ 1.0) cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 36, 805–821.

    CrossRef  Google Scholar 

  • Chiu, Y.-T., & Lin, C.-K. (2012). Effects of Nb and W additions on high-temperature creep properties of ferritic stainless steels for solid oxide fuel cell interconnect. Journal of Power Sources, 198, 149–157.

    CrossRef  Google Scholar 

  • Chu, C.-L., Lee, J., Lee, T.-H., & Cheng, Y.-N. (2009). Oxidation behavior of metallic interconnect coated with La–Sr–Mn film by screen painting and plasma sputtering. International Journal of Hydrogen Energy, 34, 422–434.

    CrossRef  Google Scholar 

  • Da Conceição, L., Dessemond, L., Djurado, E., & Souza, M. M. V. M. (2013). La0.7Sr0.3MnO3-coated SS444 alloy by dip-coating process for metallic interconnect supported solid oxide fuel cells. Journal of Power Sources, 241, 159–167.

    CrossRef  Google Scholar 

  • Da Conceição, L., & Souza, M. M. V. M. (2013). Synthesis of La0.7Sr0.3MnO3 thin films supported on Fe–Cr alloy by sol–gel/dip-coating process: Evaluation of deposition parameters. Thin Solid Films, 534, 218–225.

    CrossRef  Google Scholar 

  • De Angelis Korb, M., Savaris, I. D., Feistauer, E. E., Barreto, L. S., Heck, N. C., Müller, I. L., et al. (2013). Modification of the La0.6Sr0.4CoO3 coating deposited on ferritic stainless steel by spray pyrolysis after oxidation in air at high temperature. International Journal of Hydrogen Energy, 38, 4760–4766.

    CrossRef  Google Scholar 

  • Fergus, J., Hui, R., Li, X., Wilkinson, D. P., & Zhang, J. (2008). Solid oxide fuel cells: Materials properties and performance. Boca Raton: CRC press.

    Google Scholar 

  • Fergus, J. W. (2004). Lanthanum chromite-based materials for solid oxide fuel cell interconnects. Solid State Ionics, 171, 1–15.

    CrossRef  Google Scholar 

  • Fergus, J. W. (2005). Metallic interconnects for solid oxide fuel cells. Materials Science and Engineering A, 397, 271–283.

    CrossRef  Google Scholar 

  • Flandermeyer, B. K., Poeppel, R. B., Dusek, J. T., & Anderson, H. U. (1988). Sintering aid for lanthanum chromite refractories. US Patent #4,749,632.

    Google Scholar 

  • Fontana, S., Amendola, R., Chevalier, S., Piccardo, P., Caboche, G., Viviani, M., et al. (2007). Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. Journal of Power Sources, 171, 652–662.

    CrossRef  Google Scholar 

  • Fontana, S., Chevalier, S., & Caboche, G. (2012). metallic interconnects for solid oxide fuel cell: Performance of reactive element oxide coating during 10, 20 and 30 months exposure. Oxidation of Metals, 78, 307–328.

    CrossRef  Google Scholar 

  • Frangini, S., Masci, A., McPhail, S. J., Soccio, T., & Zaza, F. (2014). Degradation behavior of a commercial 13Cr ferritic stainless steel (SS405) exposed to an ambient air atmosphere for IT-SOFC interconnect applications. Materials Chemistry and Physics, 144, 491–497.

    CrossRef  Google Scholar 

  • Froitzheim, J., Canovic, S., Nikumaa, M., Sachitanand, R., Johansson, L. G., & Svensson, J. E. (2012). Long term study of Cr evaporation and high temperature corrosion behaviour of Co coated ferritic steel for solid oxide fuel cell interconnects. Journal of Power Sources, 220, 217–227.

    CrossRef  Google Scholar 

  • Froitzheim, J., Meier, G. H., Niewolak, L., Ennis, P. J., Hattendorf, H., Singheiser, L., et al. (2008). Development of high strength ferritic steel for interconnect application in SOFCs. Journal of Power Sources, 178, 163–173.

    CrossRef  Google Scholar 

  • Fu, Y.-P., Wang, H.-C., Weng, C.-S., Hu, S.-H., & Liu, Y.-C. (2015). Characterizations of Fe doping on B-Site of (La0.8Ca0.2)(Cr0.9Co0.1)O3−δ interconnect materials for SOFCs. Journal of the American Ceramic Society, 98(8), 2561.

    Google Scholar 

  • Furtado, J. G. M., & Oliveira, R. N. (2008). Development of lanthanum chromites-based materials for solid oxide fuel cell interconnects. Matéria (Rio de Janeiro), 13, 147–153.

    CrossRef  Google Scholar 

  • Gannon, P. E., Tripp, C. T., Knospe, A. K., Ramana, C. V., Deibert, M., Smith, R. J., et al. (2004). High-temperature oxidation resistance and surface electrical conductivity of stainless steels with filtered arc Cr–Al–N multilayer and/or superlattice coatings. Surface and Coatings Technology, 188–189, 55–61.

    Google Scholar 

  • Gannon, P. E., & Montana State University. (2007). Study of solid oxide fuel cell interconnects, protective coatings and advanced physical vapor deposition techniques. Montana, United States of America: Montana State University.

    Google Scholar 

  • Garcia-Fresnillo, L., Shemet, V., Chyrkin, A., de Haart, L., & Quadakkers, W. (2014). Long-term behaviour of solid oxide fuel cell interconnect materials in contact with Ni-mesh during exposure in simulated anode gas at 700 and 800° C. Journal of Power Sources, 271, 213–222.

    CrossRef  Google Scholar 

  • Geng, S., Qi, S., Xiang, D., Zhu, S., & Wang, F. (2012a). Oxidation and electrical behavior of ferritic stainless steel interconnect with Fe–Co–Ni coating by electroplating. Journal of Power Sources, 215, 274–278.

    CrossRef  Google Scholar 

  • Geng, S., Qi, S., Zhao, Q., Zhu, S., & Wang, F. (2012b). Electroplated Ni-Fe2O3 composite coating for solid oxide fuel cell interconnect application. International Journal of Hydrogen Energy, 37, 10850–10856.

    CrossRef  Google Scholar 

  • Geng, S., Wang, Q., Wang, W., Zhu, S., & Wang, F. (2012c). Sputtered Ni coating on ferritic stainless steel for solid oxide fuel cell interconnect application. International Journal of Hydrogen Energy, 37, 916–920.

    CrossRef  Google Scholar 

  • Geng, S., & Zhu, J. (2006). Promising alloys for intermediate-temperature solid oxide fuel cell interconnect application. Journal of Power Sources, 160, 1009–1016.

    CrossRef  Google Scholar 

  • Gopalan, S. (2005). Bi-Layer pn junction interconnections for goal based solid oxide fuel cells, Final Technical Report DOE, 1–21.

    Google Scholar 

  • Hayashi, S., Fukaya, K., & Saito, H. (1988). Sintering of lanthanum chromite doped with zinc or copper. Journal of Materials Science Letters, 7, 457–458.

    CrossRef  Google Scholar 

  • Hedström, P., Huyan, F., Zhou, J., Wessman, S., Thuvander, M., & Odqvist, J. (2013). The 475 °C embrittlement in Fe-20Cr and Fe-20Cr-X (X = Ni, Cu, Mn) alloys studied by mechanical testing and atom probe tomography. Materials Science and Engineering A, 574, 123–129.

    CrossRef  Google Scholar 

  • Heidarpour, A., Choi, G. M., Abbasi, M. H., & Saidi, A. (2012). A novel approach to co-sintering of doped lanthanum chromite interconnect on Ni–YSZ anode substrate for SOFC applications. Journal of Alloys and Compounds, 512, 156–159.

    CrossRef  Google Scholar 

  • Heidarpour, A., Saidi, A., Abbasi, M. H., & Choi, G. M. (2013). In situ fabrication mechanism of a dense Sr and Ca doped lanthanum chromite interconnect on Ni-YSZ anode of a solid oxide fuel cell during co-sintering. Ceramics International, 39, 1821–1826.

    CrossRef  Google Scholar 

  • Hosseini, N., Abbasi, M. H., Karimzadeh, F., & Choi, G. M. (2015). Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects. Journal of Power Sources, 273, 1073–1083.

    CrossRef  Google Scholar 

  • Hosseini, N., Karimzadeh, F., Abbasi, M. H., & Choi, G. M. (2014). Microstructural characterization and electrical conductivity of CuxMn3−xO4 (0.9 ≤ x ≤ 1.3) spinels produced by optimized glycine–nitrate combustion and mechanical milling processes. Ceramics International, 40, 12219–12226.

    CrossRef  Google Scholar 

  • Hoyt, K. O., Gannon, P. E., White, P., Tortop, R., Ellingwood, B. J., & Khoshuei, H. (2012). Oxidation behavior of (Co, Mn)3O4 coatings on preoxidized stainless steel for solid oxide fuel cell interconnects. International Journal of Hydrogen Energy, 37, 518–529.

    CrossRef  Google Scholar 

  • Hua, B., Pu, J., Lu, F., Zhang, J., Chi, B., & Jian, L. (2010a). Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells. Journal of Power Sources, 195, 2782–2788.

    CrossRef  Google Scholar 

  • Hua, B., Zhang, W., Wu, J., Pu, J., Chi, B., & Jian, L. (2010b). A promising NiCo2O4 protective coating for metallic interconnects of solid oxide fuel cells. Journal of Power Sources, 195, 7375–7379.

    CrossRef  Google Scholar 

  • Huang, J.-J., Fu, Y.-P., Wang, J.-Y., Cheng, Y.-N., Lee, S., & Hsu, J.-C. (2014). Characterization of Fe–Cr alloy metallic interconnects coated with LSMO using the aerosol deposition process. Materials Research Bulletin, 51, 63–68.

    CrossRef  Google Scholar 

  • Huang, W., & Gopalan, S. (2006). Bi-layer structures as solid oxide fuel cell interconnections. Solid State Ionics, 177, 347–350.

    CrossRef  Google Scholar 

  • Jian, P., Jian, L., Bing, H., & Xie, G. (2006). Oxidation kinetics and phase evolution of a Fe–16Cr alloy in simulated SOFC cathode atmosphere. Journal of Power Sources, 158, 354–360.

    CrossRef  Google Scholar 

  • Jo, K. H., Kim, J. H., Kim, K. M., Lee, I.-S., & Kim, S.-J. (2015). Development of a new cost effective Fe–Cr ferritic stainless steel for SOFC interconnect. International Journal of Hydrogen Energy. 40(30), 9523.

    Google Scholar 

  • Kornely, M., Neumann, A., Menzler, N. H., Leonide, A., Weber, A., & Ivers-Tiffée, E. (2011). Degradation of anode supported cell (ASC) performance by Cr-poisoning. Journal of Power Sources, 196, 7203–7208.

    CrossRef  Google Scholar 

  • Kruk, A., Stygar, M., & Brylewski, T. (2013). Mn–Co spinel protective–conductive coating on AL453 ferritic stainless steel for IT-SOFC interconnect applications. Journal of Solid State Electrochemistry, 17, 993–1003.

    CrossRef  Google Scholar 

  • Kurokawa, H., Kawamura, K., & Maruyama, T. (2004). Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient. Solid State Ionics, 168, 13–21.

    CrossRef  Google Scholar 

  • Lee, S., Chu, C.-L., Tsai, M.-J., & Lee, J. (2010). High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing. Applied Surface Science, 256, 1817–1824.

    CrossRef  Google Scholar 

  • Li, S., Wang, Y., & Wang, X. (2015). Effects of Ni content on the microstructures, mechanical properties and thermal aging embrittlement behaviors of Fe–20Cr–xNi alloys. Materials Science and Engineering A, 639, 640–646.

    CrossRef  Google Scholar 

  • Liu, W. N., Sun, X., Stephens, E., & Khaleel, M. A. (2009). Life prediction of coated and uncoated metallic interconnect for solid oxide fuel cell applications. Journal of Power Sources, 189, 1044–1050.

    CrossRef  Google Scholar 

  • Liu, X., Su, W., Lu, Z., Liu, J., Pei, L., Liu, W., et al. (2000). Mixed valence state and electrical conductivity of La1−xSrxCrO3. Journal of Alloys and Compounds, 305, 21–23.

    CrossRef  Google Scholar 

  • Marina, O. A., Canfield, N. L., & Stevenson, J. W. (2002). Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics, 149, 21–28.

    CrossRef  Google Scholar 

  • Miguel-Pérez, V., Martínez-Amesti, A., Nó, M. L., Larrañaga, A., & Arriortua, M. I. (2012). Oxide scale formation on different metallic interconnects for solid oxide fuel cells. Corrosion Science, 60, 38–49.

    CrossRef  Google Scholar 

  • Miguel-Pérez, V., Martínez-Amesti, A., Nó, M. L., Larrañaga, A., & Arriortua, M. I. (2013). The effect of doping (Mn, B)3O4 materials as protective layers in different metallic interconnects for solid oxide fuel cells. Journal of Power Sources, 243, 419–430.

    CrossRef  Google Scholar 

  • Montero, X., Tietz, F., Sebold, D., Buchkremer, H. P., Ringuede, A., Cassir, M., et al. (2008). MnCo1.9Fe0.1O4 spinel protection layer on commercial ferritic steels for interconnect applications in solid oxide fuel cells. Journal of Power Sources, 184, 172–179.

    Google Scholar 

  • Morán-Ruiz, A., Vidal, K., Laguna-Bercero, M. Á., Larrañaga, A., & Arriortua, M. I. (2014). Effects of using (La0.8Sr0.2)0.95Fe0.6Mn0.3Co0.1O3 (LSFMC), LaNi0.6Fe0.4O3−δ (LNF) and LaNi0.6Co0.4O3−δ (LNC) as contact materials on solid oxide fuel cells. Journal of Power Sources, 248, 1067–1076.

    CrossRef  Google Scholar 

  • Morán-Ruiz, A., Vidal, K., Larrañaga, A., Porras-Vázquez, J. M., Slater, P. R., & Arriortua, M. I. (2015a). Evaluation of using protective/conductive coating on Fe-22Cr mesh as a composite cathode contact material for intermediate solid oxide fuel cells. International Journal of Hydrogen Energy, 40, 4804–4818.

    CrossRef  Google Scholar 

  • Morán-Ruiz, A., Vidal, K., Larrañaga, A., Porras-Vázquez, J. M., Slater, P. R., & Arriortua, M. I. (2015b). Laser machining of LaNi0.6M0.4O3−δ (M: Co, Fe) dip-coated on a Fe–22Cr mesh material to obtain a new contact coating for SOFC: Interaction between Crofer22APU interconnect and La0.6Sr0.4FeO3 cathode. International Journal of Hydrogen Energy, 40, 8407–8418.

    CrossRef  Google Scholar 

  • Nair, S. R., Purohit, R. D., Tyagi, A. K., Sinha, P. K., & Sharma, B. P. (2008). Low-temperature sintering of La(Ca)CrO3 powder prepared through the combustion process. Journal of the American Ceramic Society, 91, 88–91.

    CrossRef  Google Scholar 

  • Niewolak, L., Garcia-Fresnillo, L., Meier, G. H., & Quadakkers, W. J. (2015). Sigma-phase formation in high chromium ferritic steels at 650 °C. Journal of Alloys and Compounds, 638, 405–418.

    CrossRef  Google Scholar 

  • Ou, D. R., & Cheng, M. (2014). Effect of pre-oxidation on the oxidation resistance of spinel-coated Fe–Cr ferritic alloy for solid oxide fuel cell applications. Journal of Power Sources, 247, 84–89.

    CrossRef  Google Scholar 

  • Palcut, M., Mikkelsen, L., Neufeld, K., Chen, M., Knibbe, R., & Hendriksen, P. V. (2012). Efficient dual layer interconnect coating for high temperature electrochemical devices. International Journal of Hydrogen Energy, 37, 14501–14510.

    CrossRef  Google Scholar 

  • Park, B.-K., Lee, J.-W., Lee, S.-B., Lim, T.-H., Park, S.-J., Park, C.-O., et al. (2013). Cu- and Ni-doped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells. International Journal of Hydrogen Energy, 38, 12043–12050.

    Google Scholar 

  • Park, B.-K., Lee, J.-W., Lee, S.-B., Lim, T.-H., Park, S.-J., Song, R.-H., et al. (2012). La-doped SrTiO3 interconnect materials for anode-supported flat-tubular solid oxide fuel cells. International Journal of Hydrogen Energy, 37, 4319–4327.

    Google Scholar 

  • Park, B. K., Lee, J. W., Lee, S. B., Lim, T. H., Park, S. J., Park, C. O., et al. (2013). Cu- and Ni-doped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells. International Journal of Hydrogen Energy, 38, 12043–12050.

    Google Scholar 

  • Paulik, S. W., Baskaran, S., & Armstrong, T. R. (1999). Mechanical properties of calcium-substituted yttrium chromite. Journal of Materials Science Letters, 18, 819–822.

    CrossRef  Google Scholar 

  • Persson, Å. H., Mikkelsen, L., Hendriksen, P. V., & Somers, M. A. J. (2012). Interaction mechanisms between slurry coatings and solid oxide fuel cell interconnect alloys during high temperature oxidation. Journal of Alloys and Compounds, 521, 16–29.

    CrossRef  Google Scholar 

  • Pi, S. H., Lee, S. B., Song, R. H., Lee, J. W., Lim, T. H., Park, S. J., et al. (2013). Novel Ag–glass composite interconnect materials for anode-supported flat-tubular solid oxide fuel cells operated at an intermediate temperature. Fuel Cells, 13, 392–397.

    Google Scholar 

  • Piccardo, P., Anelli, S., Bongiorno, V., Spotorno, R., Repetto, L., & Girardon, P. (2015). K44M ferritic stainless steel as possible interconnect material for SOFC stack operating at 600 °C: Characterization of the oxidation behaviour at early working stages. International Journal of Hydrogen Energy, 40, 3726–3738.

    CrossRef  Google Scholar 

  • Przybylski, K., Brylewski, T., Durda, E., Gawel, R., & Kruk, A. (2014). Oxidation properties of the Crofer 22 APU steel coated with La0.6Sr0.4Co0.2Fe0.8O3 for IT-SOFC interconnect applications. Journal of Thermal Analysis and Calorimetry, 116, 825–834.

    CrossRef  Google Scholar 

  • Rashtchi, H., Sani, M. A. F., & Dayaghi, A. M. (2013). Effect of Sr and Ca dopants on oxidation and electrical properties of lanthanum chromite-coated AISI 430 stainless steel for solid oxide fuel cell interconnect application. Ceramics International, 39, 8123–8131.

    CrossRef  Google Scholar 

  • Rufner, J., Gannon, P., White, P., Deibert, M., Teintze, S., Smith, R., et al. (2008). Oxidation behavior of stainless steel 430 and 441 at 800 °C in single (air/air) and dual atmosphere (air/hydrogen) exposures. International Journal of Hydrogen Energy, 33, 1392–1398.

    Google Scholar 

  • Sachitanand, R., Sattari, M., Svensson, J.-E., & Froitzheim, J. (2013). Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects. International Journal of Hydrogen Energy, 38, 15328–15334.

    CrossRef  Google Scholar 

  • Safikhani, A., & Aminfard, M. (2014). Effect of W and Ti addition on oxidation behavior and area-specific resistance of Fe–22Cr–0.5Mn ferritic stainless steel for SOFCs interconnect. International Journal of Hydrogen Energy, 39, 2286–2296.

    CrossRef  Google Scholar 

  • Sakai, N., Yokokawa, H., Horita, T., & Yamaji, K. (2004). Lanthanum chromite-based interconnects as key materials for SOFC stack development. International Journal of Applied Ceramic Technology, 1, 23–30.

    CrossRef  Google Scholar 

  • Sarda, V., Auvinen, S., Shemet, V., Quadakkers, W. J., Pihlatie, M., Kiviaho, J., et al. (2013). Long term resistivity behavior of SOFC interconnect/Ni-Mesh/anode interfaces. ECS Transactions, 57, 2279–2288.

    Google Scholar 

  • Seabaugh, M. M., Ibanez, S., & Swartz, S. L. (2012). Protective coatings for metal alloys and methods incorporating the same. Google Patents.

    Google Scholar 

  • Seo, H. S., Yun, D. W., & Kim, K. Y. (2012). Effect of Ti addition on the electric and ionic property of the oxide scale formed on the ferritic stainless steel for SOFC interconnect. International Journal of Hydrogen Energy, 37, 16151–16160.

    CrossRef  Google Scholar 

  • Setz, L. F. G., Santacruz, I., León-Reina, L., De la Torre, A. G., Aranda, M. A. G., Mello-Castanho, S. R. H., et al. (2015). Strontium and cobalt doped-lanthanum chromite: Characterisation of synthesised powders and sintered materials. Ceramics International, 41, 1177–1187.

    Google Scholar 

  • Shaigan, N., Qu, W., Ivey, D. G., & Chen, W. (2010). A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. Journal of Power Sources, 195, 1529–1542.

    CrossRef  Google Scholar 

  • Simner, S. P., Anderson, M. D., Xia, G. G., Yang, Z., & Stevenson, J. W. (2005). Long-term SOFC stability with coated ferritic stainless steel interconnect. Ceramic Engineering and Science Proceedings, 83–90.

    Google Scholar 

  • Singhal, S. C. (2000). Advances in solid oxide fuel cell technology. Solid State Ionics, 135, 305–313.

    CrossRef  Google Scholar 

  • Singhal, S. C., & Kendall, K. (2003). High-temperature solid oxide fuel cells: Fundamentals, design and applications: Fundamentals, design and applications. Oxford: Elsevier Science.

    Google Scholar 

  • Smeacetto, F., De Miranda, A., Cabanas Polo, S., Molin, S., Boccaccini, D., et al. (2015). Electrophoretic deposition of Mn1.5Co1.5O4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application. Journal of Power Sources, 280, 379–386.

    Google Scholar 

  • Smeacetto, F., Salvo, M., Leone, P., Santarelli, M., & Ferraris, M. (2011). Performance and testing of joined Crofer22APU-glass-ceramic sealant-anode supported cell in SOFC relevant conditions. Materials Letters, 65, 1048–1052.

    CrossRef  Google Scholar 

  • Stambouli, A. B., & Traversa, E. (2002). Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 6, 433–455.

    CrossRef  Google Scholar 

  • Stevenson, J. W., Yang, Z. G., Xia, G. G., Nie, Z., & Templeton, J. D. (2013). Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications. Journal of Power Sources, 231, 256–263.

    CrossRef  Google Scholar 

  • Tsai, M.-J., Chu, C.-L., & Lee, S. (2010). La0.6Sr0.4Co0.2Fe0.8O3 protective coatings for solid oxide fuel cell interconnect deposited by screen printing. Journal of Alloys and Compounds, 489, 576–581.

    CrossRef  Google Scholar 

  • Tunthawiroon, P., Li, Y., Tang, N., Koizumi, Y., & Chiba, A. (2015). Effects of alloyed Si on the oxidation behaviour of Co–29Cr–6Mo alloy for solid-oxide fuel cell interconnects. Corrosion Science, 95, 88–99.

    CrossRef  Google Scholar 

  • Vidal, K., Morán-Ruiz, A., Larrañaga, A., Porras-Vázquez, J. M., Slater, P. R., & Arriortua, M. I. (2015). Characterization of LaNi0.6Fe0.4O3 perovskite synthesized by glycine-nitrate combustion method. Solid State Ionics, 269, 24–29.

    CrossRef  Google Scholar 

  • Wang, S., Lin, B., Chen, Y., Liu, X., & Meng, G. (2009a). Evaluation of simple, easily sintered La0.7Ca0.3Cr0.97O3-δ perovskite oxide as novel interconnect material for solid oxide fuel cells. Journal of Alloys and Compounds, 479, 764–768.

    CrossRef  Google Scholar 

  • Wang, S., Lin, B., Dong, Y., Fang, D., Ding, H., Liu, X., et al. (2009b). Stable, easily sintered Ca–Zn-doped YCrO3 as novel interconnect materials for co-fired yttrium-stabilized zirconia-based solid oxide fuel cells. Journal of Power Sources, 188, 483–488.

    Google Scholar 

  • Wang, Z., Mori, M., & Itoh, T. (2010). Thermal expansion properties of Sr1 − xLaxTiO3 ( 0 ≤ x ≤ 0.3) perovskites in oxidizing and reducing atmospheres. Journal of the Electrochemical Society, 157, B1783–B1789.

    CrossRef  Google Scholar 

  • Wei, T., Liu, X., Yuan, C., Gao, Q., Xin, X., & Wang, S. (2014). A modified liquid-phase-assisted sintering mechanism for La0.8Sr0.2Cr1−xFexO3−δ—A high density, redox-stable perovskite interconnect for solid oxide fuel cells. Journal of Power Sources, 250, 152–159.

    CrossRef  Google Scholar 

  • Wei, W., Chen, W., & Ivey, D. G. (2009). Oxidation resistance and electrical properties of anodically electrodeposited Mn–Co oxide coatings for solid oxide fuel cell interconnect applications. Journal of Power Sources, 186, 428–434.

    CrossRef  Google Scholar 

  • Wongpromrat, W., Parry, V., Charlot, F., Crisci, A., Latu-Romain, L., Chandra-ambhorn, W., et al. (2015). Possible connection between nodule development and presence of niobium and/or titanium during short time thermal oxidation of AISI 441 stainless steel in wet atmosphere. Materials at High Temperatures, 32, 22–27.

    Google Scholar 

  • Wu, J., Gemmen, R. S., Manivannan, A., & Liu, X. (2011). Investigation of Mn/Co coated T441 alloy as SOFC interconnect by on-cell tests. International Journal of Hydrogen Energy, 36, 4525–4529.

    CrossRef  Google Scholar 

  • Wu, W., Guan, W., Wang, G., Liu, W., Zhang, Q., Chen, T., et al. (2014). Evaluation of Ni80Cr20/(La0.75Sr0.25)0.95MnO3 dual layer coating on SUS 430 stainless steel used as metallic interconnect for solid oxide fuel cells. International Journal of Hydrogen Energy, 39, 996–1004.

    Google Scholar 

  • Wu, W., Guan, W., & Wang, W. (2015). Contribution of properties of composite cathode and cathode/electrolyte interface to cell performance in a planar solid oxide fuel cell stack. Journal of Power Sources, 279, 540–548.

    CrossRef  Google Scholar 

  • Xiao, J., Zhang, W., Xiong, C., Chi, B., Pu, J., & Jian, L. (2015). Oxidation of MnCu0.5Co1.5O4 spinel coated SUS430 alloy interconnect in anode and cathode atmospheres for intermediate temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 40, 1868–1876.

    CrossRef  Google Scholar 

  • Yang, P., Liu, C.-K., Wu, J.-Y., Shong, W.-J., Lee, R.-Y., & Sung, C.-C. (2012). Effects of pre-oxidation on the microstructural and electrical properties of La0.67Sr0.33MnO3 − δ coated ferritic stainless steels. Journal of Power Sources, 213, 63–68.

    CrossRef  Google Scholar 

  • Yang, X., Tu, H., & Yu, Q. (2015). Fabrication of Co3O4 and La0.6Sr0.4CoO3−δ–Ce0.8Gd0.2O2−δ dual layer coatings on SUS430 steel by in-situ phase formation for solid oxide fuel cell interconnects. International Journal of Hydrogen Energy, 40, 607–614.

    CrossRef  Google Scholar 

  • Yang, Z., Xia, G., Simner, S. P., & Stevenson, J. W. (2005). Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnects. Journal of the Electrochemical Society, 152, A1896–A1901.

    CrossRef  Google Scholar 

  • Yang, Z., Xia, G. G., Li, X. H., & Stevenson, J. W. (2007). (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. International Journal of Hydrogen Energy, 32, 3648–3654.

    CrossRef  Google Scholar 

  • Yokokawa, H., Sakai, N., Kawada, T., & Dokiya, M. (1991). Chemical thermodynamic considerations in sintering of LaCrO3-based perovskites. Journal of the Electrochemical Society, 138, 1018–1027.

    CrossRef  Google Scholar 

  • Yoon, K. J., Cramer, C. N., Stevenson, J. W., & Marina, O. A. (2010a). Advanced ceramic interconnect material for solid oxide fuel cells: Electrical and thermal properties of calcium- and nickel-doped yttrium chromites. Journal of Power Sources, 195, 7587–7593.

    CrossRef  Google Scholar 

  • Yoon, K. J., Cramer, C. N., Thomsen, E. C., Coyle, C. A., Coffey, G. W., & Marina, O. A. (2010b). Calcium- and cobalt-doped yttrium chromites as an interconnect material for solid oxide fuel cells. Journal of the Electrochemical Society, 157, B856–B861.

    CrossRef  Google Scholar 

  • Yoon, K. J., Stevenson, J. W., & Marina, O. A. (2011). High performance ceramic interconnect material for solid oxide fuel cells (SOFCs): Ca- and transition metal-doped yttrium chromite. Journal of Power Sources, 196, 8531–8538.

    CrossRef  Google Scholar 

  • Yun, D. W., Seo, H. S., Jun, J. H., & Kim, K. Y. (2013). Evaluation of Nb- or Mo-alloyed ferritic stainless steel as SOFC interconnect by using button cells. International Journal of Hydrogen Energy, 38, 1560–1570.

    CrossRef  Google Scholar 

  • Yun, D. W., Seo, H. S., Jun, J. H., Lee, J. M., & Kim, K. Y. (2012). Molybdenum effect on oxidation resistance and electric conduction of ferritic stainless steel for SOFC interconnect. International Journal of Hydrogen Energy, 37, 10328–10336.

    CrossRef  Google Scholar 

  • Zhang, H., Wu, J., Liu, X., & Baker, A. (2013). Studies on elements diffusion of Mn/Co coated ferritic stainless steel for solid oxide fuel cell interconnects application. International Journal of Hydrogen Energy, 38, 5075–5083.

    CrossRef  Google Scholar 

  • Zhang, W., Pu, J., Chi, B., & Jian, L. (2011). NiMn2O4 spinel as an alternative coating material for metallic interconnects of intermediate temperature solid oxide fuel cells. Journal of Power Sources, 196, 5591–5594.

    CrossRef  Google Scholar 

  • Zhang, W., Yan, D., Yang, J., Chen, J., Chi, B., Pu, J., et al. (2014a). A novel low Cr-containing Fe–Cr–Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells. Journal of Power Sources, 271, 25–31.

    Google Scholar 

  • Zhang, Y., Javed, A., Zhou, M., Liang, S., & Xiao, P. (2014b). Fabrication of Mn–Co spinel coatings on Crofer 22 APU stainless steel by electrophoretic deposition for interconnect applications in solid oxide fuel cells. International Journal of Applied Ceramic Technology, 11, 332–341.

    CrossRef  Google Scholar 

  • Zhang, Z., Yue, D., Yang, G., Chen, J., Zheng, Y., Miao, H., et al. (2015). Three-dimensional CFD modeling of transport phenomena in multi-channel anode-supported planar SOFCs. International Journal of Heat and Mass Transfer, 84, 942–954.

    Google Scholar 

  • Zhong, Z. (2006). Stoichiometric lanthanum chromite based ceramic interconnects with low sintering temperature. Solid State Ionics, 177, 757–764.

    CrossRef  Google Scholar 

  • Zhu, W. Z., & Deevi, S. C. (2003a). Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering A, 348, 227–243.

    CrossRef  Google Scholar 

  • Zhu, W. Z., & Deevi, S. C. (2003b). Opportunity of metallic interconnects for solid oxide fuel cells: A status on contact resistance. Materials Research Bulletin, 38, 957–972.

    CrossRef  Google Scholar 

Download references

Acknowledgments

This chapter is prepared in the framework of the following project: the Ministry of Education and Science of the Russian Federation (Mega-grant contract No. 14.Z50.31.0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Tsiakaras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Brouzgou, A., Demin, A., Tsiakaras, P. (2017). Interconnects for Solid Oxide Fuel Cells. In: Boaro, M., Salvatore, A. (eds) Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology. CISM International Centre for Mechanical Sciences, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-46146-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46146-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46145-8

  • Online ISBN: 978-3-319-46146-5

  • eBook Packages: EngineeringEngineering (R0)