Skip to main content

From Grothendieck’s Schemes to QCD

  • Chapter
  • First Online:
The Universal Coefficient Theorem and Quantum Field Theory

Part of the book series: Springer Theses ((Springer Theses))

  • 746 Accesses

Abstract

In order to have a self-contained discussion about universal coefficient theorems, coefficient groups and their effects on quantum field theories some supplemental concepts must be introduced. I suppose that the concept of ring is well understood. Basically it represents a set of elements for which we can define two operations: multiplication and addition. The set is then a group for addition and a monoid for multiplication while the multiplication is distributive with respect to addition. The set can contain not only numbers but various other objects. In the theory of rings we can define the so called ideal of a ring. For a ring \((R,+,\cdot )\) we consider \((R,+)\) to be its additive group. We call a subset I its ideal if it is an additive subgroup of R that absorbs through multiplication by elements of R all the other elements.

‘Do you know, I always thought unicorns were fabulous monsters, too? I never saw one alive before!’

‘Well, now that we have seen each other’, said the unicorn, ‘if you’ll believe in me, I’ll believe in you’

Lewis Carroll, Alice in Wonderland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Grothendieck, J. Dieudonne, Elements de geometrie algebrique. Publ. Inst. des Hautes Etudes Scientifiques, 4 (1960)

    Google Scholar 

  2. D. Eisenbud, J. Harris, The Geometry of Schemes (Springer, Heidelberg, 2000). ISBN 978-0-387-22639-2

    Google Scholar 

  3. P. Nelson, An Introduction to Schemes, Lecture Notes (University of Chicago, Chicago, 2009)

    Google Scholar 

  4. A. Grothendieck, Inst. des Hautes Etudes Scientiques. Pub. Math. 29(29), 95 (1966)

    Google Scholar 

  5. J. Walcher, Extended holomorphic anomaly and loop amplitudes in open topological strings. Nucl. Phys. B 817(3), 167 (2009)

    Google Scholar 

  6. A. Kanazawa, J. Zhou, Lectures on BCOV holomorphic anomaly equations, Fields Institute Monograph (2014). arXiv:1409.4105 [math.AG]

  7. M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Comm. Math. Phys. 165(2), 311 (1994)

    Google Scholar 

  8. A. Hamilton, A. Lazarev, Graph cohomology classes in the Batalinilkovisky formalism. J. Geom. Phys. 59(5), 555 (2009)

    Google Scholar 

  9. E.F. Kurusch, D. Kreimer, Hopf algebra approach to Feynman diagram calculations. J. Phys. A: Math. Gen. 38, 50 (2005)

    MathSciNet  MATH  Google Scholar 

  10. R. Gilman, R.J. Holt, P. Stoler, Transition to perturbative QCD. J. Phys.: Conf. Ser. 299, 012009 (2011)

    ADS  Google Scholar 

  11. D.J. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30(26), 1343 (1973)

    Google Scholar 

  12. S. Pokorski, Gauge Field Theories (Cambridge University Press, Cambridge, 1987). ISBN 0-521-36846-4

    Google Scholar 

  13. H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30(26), 1346 (1973)

    Google Scholar 

  14. L. Brink, H.B. Nielsen, Two mass relations for mesons from string-quark duality. Nucl.Phys. B 89(1), 118 (1975)

    Google Scholar 

  15. C.G. Callan, Broken scale invariance in scalar field theory. Phys. Rev. D 2, 1541 (1970)

    Google Scholar 

  16. J.C. Collins, Renormalization (Cambridge University Press, Cambridge, 1984). ISBN 0-521-24261-4

    Google Scholar 

  17. M. Gell-Mann, Symmetries of Baryons and Mesons. Phys. Rev. 125(3), 1067 (1962)

    Google Scholar 

  18. D.J.E. Callaway, A. Rahman, Lattice gauge theory in the microcanonical ensemble. Phys. Rev. D 28(6), 1506 (1983)

    Google Scholar 

  19. J. Alitti, An improved determination of the ratio of W and Z masses at the CERN pp collider. Phys. Lett. B276, 354 (1992)

    Google Scholar 

  20. J. Polchinski, Introduction to gauge gravity duality. TASI Lectures (2010). arXiv:hep-th/1010.6134

  21. G. Zafrir, Duality and enhancement of symmetry in 5d gauge theories. J. High Energy Phys. (JHEP) 12, 116 (2014)

    Google Scholar 

  22. G. ’t Hooft, A planar diagram theory for strong interactions. Nucl. Phys. B 72(3), 461 (1974)

    Google Scholar 

  23. A.V. Manohar, Large N QCD, Les Houches Lectures (1998) p. 22. arXiv:hep-ph/9802419

  24. G.W. Moore, PiTP Lectures on BPS states and Wall-Crossing in d=4, N=2 theories, PiTP Prospects in theoretical physics (2010)

    Google Scholar 

  25. J.F. Davis, P. Kirk, Lecture Notes in Algebraic Topology. Dept. of Math. Indiana University, Bloomington, IN 47405 (1991)

    Google Scholar 

  26. E. Dror, Homology spheres. Israel J. of Math. 15, 115 (1973)

    Google Scholar 

  27. A.T. Patrascu, Quantization, holography and the universal coefficient theorem. Phys. Rev. D 90, 045018 (2014)

    Article  ADS  Google Scholar 

  28. J. Harvey, G. Moore, On the algebras of BPS states. Comm. Math. Phys. 197, 489 (1998)

    Google Scholar 

  29. A. Grothendieck, Sur quelques points d’algebre homologique. Tohoku Math. J. 2(9), 119 (1957)

    Google Scholar 

  30. E. Felix, W. Heffern, Lectures on Homology and Cohomology, Florida International University Lectures, (2011-2012), p. 11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei-Tudor Patrascu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patrascu, AT. (2017). From Grothendieck’s Schemes to QCD. In: The Universal Coefficient Theorem and Quantum Field Theory. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-46143-4_11

Download citation

Publish with us

Policies and ethics