Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno, R.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams, vol. 6, pp. 77–86 (2006)
Google Scholar
Chukwulebe, B.O., Robertson, K., Grattan, J.: The methods, aims and practices (map) for bof endpoint control. Iron Steel Technol. 4(11), 60–70 (2007)
Google Scholar
International Electrotechnical Commission, et al.: Iec 62264–1 enterprise-control system integration-part 1: Models and terminology. IEC, Genf (2003)
Google Scholar
Coudurier, L., Hopkins, D.W., Wilkomirsky, I.: Fundamentals of Metallurgical Processes: International Series on Materials Science and Technology, vol. 27. Elsevier (2013)
Google Scholar
De Beer, J.: Future technologies for energy-efficient iron and steel making. In: Potential for Industrial Energy-Efficiency Improvement in the Long Term, pp. 93–166. Springer, Netherlands (2000)
Google Scholar
Fruehan, R.J.: The Making, Shaping, and Treating of Steel: Ironmaking volume, vol. 2. AISE Steel Foundation (1999)
Google Scholar
Morik, K., Blom, H., Odenthal, H.J., Uebber, N.: Resource-aware steel production through data mining. In: SustKDD Workshop at KDD (2012)
Google Scholar
Schlüter, J., Odenthal, H.J., Uebber, N., Blom, H., Beckers, T., Morik, K., AG, S.S.: Reliable bof endpoint prediction by novel data-driven modeling. In: AISTech Conference Proceedings. AISTech (2014)
Google Scholar
Schlüter, J., Odenthal, H.J., Uebber, N., Blom, H., Morik, K.: A novel data-driven prediction model for bof endpoint. In: Association for Iron & Steel Technology Conference, Pittsburgh, USA, vol. 6 (2013)
Google Scholar
Wolff, B., Lorenz, E., Kramer, O.: Statistical learning for short-term photovoltaic power predictions. In: Lässig, J., Kersting, K., Morik, K. (eds.) Computational Sustainability. SCI, vol. 645, pp. 31–45. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31858-5_3
CrossRef
Google Scholar
Xu, L., Li, W., Zhang, M., Xu, S., Li, J.: A model of basic oxygen furnace (bof) end-point prediction based on spectrum information of the furnace flame with support vector machine (svm). Optik-Int. J. Light Electron Optics 122(7), 594–598 (2011)
CrossRef
Google Scholar