Multi-Objective Group Discovery on the Social Web

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9851)


We are interested in discovering user groups from collaborative rating datasets of the form \(\langle i, u, s\rangle \), where \(i \in \mathcal{I}\), \(u \in \mathcal{U}\), and s is the integer rating that user u has assigned to item i. Each user has a set of attributes that help find labeled groups such as young computer scientists in France and American female designers. We formalize the problem of finding user groups whose quality is optimized in multiple dimensions and show that it is NP-Complete. We develop \(\alpha \)-MOMRI, an \(\alpha \)-approximation algorithm, and h-MOMRI, a heuristic-based algorithm, for multi-objective optimization to find high quality groups. Our extensive experiments on real datasets from the social Web examine the performance of our algorithms and report cases where \(\alpha \)-MOMRI and h-MOMRI are useful.


User Group Discovery Heuristic-based Algorithms Recording Rate Constrained Multi-objective Optimization Problem Movie Rating Website 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. ACM (1998)Google Scholar
  2. 2.
    Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: SIGMOD (1993)Google Scholar
  3. 3.
    Amiri, B., Hossain, L., Crowford, J.: A multiobjective hybrid evolutionary algorithm for clustering in social networks. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation. ACM (2012)Google Scholar
  4. 4.
    Das, M., Amer-Yahia, S., Das, G., Yu, C.: Mri: meaningful interpretations of collaborative ratings. In: VLDB (2011)Google Scholar
  5. 5.
    Dutot, P.F., Rzadca, K., Saule, E., Trystram, D.: Multi-objective Scheduling, chap. 9. Chapman and Hall/CRC Press (2009)Google Scholar
  6. 6.
    Ganguly, S., Hasan, W., Krishnamurthy, R.: Query optimization forparallel execution, vol. 21. ACM (1992)Google Scholar
  7. 7.
    Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. (CSUR) 38(3), 9 (2006)Google Scholar
  8. 8.
    Jiamthapthaksin, R., Eick, C.F., Vilalta, R.: A framework for multi-objective clustering and its application to co-location mining. In: Huang, R., Yang, Q., Pei, J., Gama, J., Meng, X., Li, X. (eds.) ADMA 2009. LNCS (LNAI), pp. 188–199. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03348-3_20 CrossRefGoogle Scholar
  9. 9.
    Kargar, M., An, A., Zihayat, M.: Efficient bi-objective team formation in social networks. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), pp. 483–498. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33486-3_31 CrossRefGoogle Scholar
  10. 10.
    Law, M.H., Topchy, A.P., Jain, A.K.: Multiobjective data clustering. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. II–424. IEEE (2004)Google Scholar
  11. 11.
    Migdalas, A., Pardalos, P.M., Värbrand, P.: Multilevel optimization: algorithms and applications, vol. 20. Springer Science & Business Media (1997)Google Scholar
  12. 12.
    Omidvar-Tehrani, B., Amer-Yahia, S., Dutot, P.F., Trystram, D.: Multi-objective group discovery on the social web. Research Report RR-LIG-052, LIG, Grenoble, France (2016)Google Scholar
  13. 13.
    Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: FOCS (2000)Google Scholar
  14. 14.
    Russell, S.J., Norvig, P.: Probabilistic reasoning. Artificial intelligence: a modern approach (2003)Google Scholar
  15. 15.
    Trummer, I., Koch, C.: Approximation schemes for many-objectivequery optimization. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. ACM (2014)Google Scholar
  16. 16.
    Tsaggouris, G., Zaroliagis, C.: Multiobjective optimization: Improved fptas for shortest paths and non-linear objectives with applications. Theory Comput. Syst. 45(1), 162–186 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.The Ohio State UniversityColumbusUSA
  2. 2.Univ. Grenoble Alps, CNRSGrenobleFrance

Personalised recommendations