Nano-Engineered Hierarchical Carbon Fibres and Their Composites: Preparation, Properties and Multifunctionalities

  • Han Zhang
  • Emiliano Bilotti
  • Ton PeijsEmail author


A general review of carbon fibre/carbon nanotube hierarchical composites is undertaken in this chapter, with a focus on preparation, properties and multifunctionalities of such composites. Various innovative nano-modifications to carbon fibres are discussed together with their morphological changes and advantages over traditional methods. The mechanical, electrical and thermal properties of nano-modified carbon fibres and their composites are summarized at both interfacial and macroscopic levels. Particular effort has been placed on multifunctionalities of nano-engineered carbon fibre composites, such as strain and damage sensing.


Carbon Fibre Structural Health Monitoring Interfacial Shear Strength Chemical Vapour Deposition Process Chemical Vapour Deposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Zhu, C.H. Su, S.L. Lehoczky, I. Muntele, D. Ila, Carbon nanotube growth on carbon fibers. Diamond Relat. Mater. 12, 1825–1828 (2003). doi: 10.1016/s0925-9635(03)00205-x CrossRefGoogle Scholar
  2. 2.
    Z.G. Zhao, L.J. Ci, H.M. Cheng, J.B. Bai, The growth of multi-walled carbon nanotubes with different morphologies on carbon fibers. Carbon 43, 663–665 (2005). doi: 10.1016/j.carbon.2004.10.013 CrossRefGoogle Scholar
  3. 3.
    E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91, 6034–6037 (2002). doi: 10.1063/1.1466880 CrossRefGoogle Scholar
  4. 4.
    T.R. Pozegic, I. Hamerton, J.V. Anguita, W. Tang, P. Ballocchi, P. Jenkins, S.R.P. Silva, Low temperature growth of carbon nanotubes on carbon fibre to create a highly networked fuzzy fibre reinforced composite with superior electrical conductivity. Carbon 74, 319–328 (2014). doi: 10.1016/j.carbon.2014.03.038 CrossRefGoogle Scholar
  5. 5.
    K.L. Kepple, G.P. Sanborn, P.A. Lacasse, K.M. Gruenberg, W.J. Ready, Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon 46, 2026–2033 (2008). doi: 10.1016/j.carbon.2008.08.010 CrossRefGoogle Scholar
  6. 6.
    A.R. Boccaccini, J. Cho, J.A. Roether, B.J.C. Thomas, E. Jane Minay, M.S.P. Shaffer, Electrophoretic deposition of carbon nanotubes. Carbon 44, 3149–3160 (2006). doi: 10.1016/j.carbon.2006.06.021 CrossRefGoogle Scholar
  7. 7.
    J. Guo, C. Lu, F. An, Effect of electrophoretically deposited carbon nanotubes on the interface of carbon fiber reinforced epoxy composite. J. Mater. Sci. 47, 2831–2836 (2012). doi: 10.1007/s10853-011-6112-5 CrossRefGoogle Scholar
  8. 8.
    K.Z. Li, L. Li, H.J. Li, Q. Song, J.H. Lu, Q.G. Fu, Electrophoretic deposition of carbon nanotubes onto carbon fiber felt for production of carbon/carbon composites with improved mechanical and thermal properties. Vacuum 104, 105–110 (2014). doi: 10.1016/j.vacuum.2014.01.024 CrossRefGoogle Scholar
  9. 9.
    T. Takeda, Y. Shindo, T. Fukuzaki, F. Narita, Short beam interlaminar shear behavior and electrical resistance-based damage self-sensing of woven carbon/epoxy composite laminates in a cryogenic environment. J. Compos. Mater. 48, 119–128 (2014). doi: 10.1177/0021998312469240 CrossRefGoogle Scholar
  10. 10.
    D.D.L. Chung, Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50, 3342–3353 (2012). doi: 10.1016/j.carbon.2012.01.031 CrossRefGoogle Scholar
  11. 11.
    H. Zhang, Y. Liu, E. Bilotti, T. Peijs, In-situ monitoring of interlaminar shear damage in carbon fibre composites. Adv. Compos. Lett. 24, 92–97 (2015)Google Scholar
  12. 12.
    H. Qian, A. Bismarck, E.S. Greenhalgh, G. Kalinka, M.S.P. Shaffer, Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level. Chem. Mater. 20, 1862–1869 (2008). doi: 10.1021/cm702782j CrossRefGoogle Scholar
  13. 13.
    B.G. Falzon, S.C. Hawkins, C.P. Huynh, R. Radjef, C. Brown, An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface. Compos. Struct. 106, 65–73 (2013). doi: 10.1016/j.compstruct.2013.05.051 CrossRefGoogle Scholar
  14. 14.
    E. Bekyarova, E.T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H.T. Hahn, T.W. Chou, M.E. Itkis, R.C. Haddon, Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir 23, 3970–3974 (2007). doi: 10.1021/la062743p CrossRefGoogle Scholar
  15. 15.
    Q. An, A.N. Rider, E.T. Thostenson, Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 50, 4130–4143 (2012). doi: 10.1016/j.carbon.2012.04.061 CrossRefGoogle Scholar
  16. 16.
    H. Zhang, M. Kuwata, E. Bilotti, T. Peijs, Integrated damage sensing in fibre-reinforced composites with extremely low carbon nanotube loadings. J. Nanomater. 2015, 7 (2015). doi: 10.1155/2015/785834 Google Scholar
  17. 17.
    H. Zhang, E. Bilotti, T. Peijs, The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: a review. Nanocomposites 1, 167–184 (2015). doi: 10.1080/20550324.2015.1113639 CrossRefGoogle Scholar
  18. 18.
    H. Zhang, Y. Liu, M. Kuwata, E. Bilotti, T. Peijs, Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Compos. A: Appl. Sci. Manuf. 70, 102–110 (2015). doi: 10.1016/j.compositesa.2014.11.029 CrossRefGoogle Scholar
  19. 19.
    T. Kamae, L.T. Drzal, Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber–matrix interphase—part I: the development of carbon nanotube coated carbon fibers and the evaluation of their adhesion. Compos. A: Appl. Sci. Manuf. 43, 1569–1577 (2012). doi: 10.1016/j.compositesa.2012.02.016 CrossRefGoogle Scholar
  20. 20.
    M. Li, Y. Gu, Y. Liu, Y. Li, Z. Zhang, Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon 52, 109–121 (2013). doi: 10.1016/j.carbon.2012.09.011 CrossRefGoogle Scholar
  21. 21.
    N. Lachman, H. Qian, M. Houlle, J. Amadou, M.S.P. Shaffer, H.D. Wagner, Fracture behavior of carbon nanotube/carbon microfiber hybrid polymer composites. J. Mater. Sci. 48, 5590–5595 (2013). doi: 10.1007/s10853-013-7353-2 CrossRefGoogle Scholar
  22. 22.
    H. Qian, A. Bismarck, E.S. Greenhalgh, M.S.P. Shaffer, Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation. Compos. A: Appl. Sci. Manuf. 41, 1107–1114 (2010). doi: 10.1016/j.compositesa.2010.04.004 CrossRefGoogle Scholar
  23. 23.
    R.J. Sager, P.J. Klein, D.C. Lagoudas, Q. Zhang, J. Liu, L. Dai, J.W. Baur, Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos. Sci. Technol. 69, 898–904 (2009). doi: 10.1016/j.compscitech.2008.12.021 CrossRefGoogle Scholar
  24. 24.
    S.B. Lee, O. Choi, W. Lee, J.W. Yi, B.S. Kim, J.H. Byun, M.K. Yoon, H. Fong, E.T. Thostenson, T.W. Chou, Processing and characterization of multi-scale hybrid composites reinforced with nanoscale carbon reinforcements and carbon fibers. Compos. A: Appl. Sci. Manuf. 42, 337–344 (2011). doi: 10.1016/j.compositesa.2010.10.016 CrossRefGoogle Scholar
  25. 25.
    P. Lv, Y.-y. Feng, P. Zhang, H.-m. Chen, N. Zhao, W. Feng, Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers. Carbon 49, 4665–4673 (2011). doi: 10.1016/j.carbon.2011.06.064 CrossRefGoogle Scholar
  26. 26.
    Q. Zhang, J. Liu, R. Sager, L. Dai, J. Baur, Hierarchical composites of carbon nanotubes on carbon fiber: influence of growth condition on fiber tensile properties. Compos. Sci. Technol. 69, 594–601 (2009). doi: 10.1016/j.compscitech.2008.12.002 CrossRefGoogle Scholar
  27. 27.
    S.A. Steiner III, R. Li, B.L. Wardle, Circumventing the mechanochemical origins of strength loss in the synthesis of hierarchical carbon fibers. ACS Appl. Mater. Interfaces 5, 4892–4903 (2013). doi: 10.1021/am4006385 CrossRefGoogle Scholar
  28. 28.
    R.B. Mathur, S. Chatterjee, B.P. Singh, Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol. 68, 1608–1615 (2008). doi: 10.1016/j.compscitech.2008.02.020 CrossRefGoogle Scholar
  29. 29.
    S.I. Kundalwal, R. Suresh Kumar, M.C. Ray, Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes. Int. J. Heat Mass Transf. 72, 440–451 (2014). doi: 10.1016/j.ijheatmasstransfer.2014.01.025 CrossRefGoogle Scholar
  30. 30.
    J. Zhang, Q. Guo, B.L. Fox, Study on thermoplastic-modified multifunctional epoxies: influence of heating rate on cure behaviour and phase separation. Compos. Sci. Technol. 69, 1172–1179 (2009). doi: 10.1016/j.compscitech.2009.02.016 CrossRefGoogle Scholar
  31. 31.
    Z. Fan, M.H. Santare, S.G. Advani, Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Compos. A: Appl. Sci. Manuf. 39, 540–554 (2008). doi: 10.1016/j.compositesa.2007.11.013 CrossRefGoogle Scholar
  32. 32.
    X. Zhao, X. Lu, W.T.Y. Tze, P. Wang, A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes. Biosens. Bioelectron. 25, 2343–2350 (2010). doi: 10.1016/j.bios.2010.03.030 CrossRefGoogle Scholar
  33. 33.
    J.S. Im, J. Yun, J.G. Kim, T.S. Bae, Y.S. Lee, The effects of carbon nanotube addition and oxyfluorination on the glucose-sensing capabilities of glucose oxidase-coated carbon fiber electrodes. Appl. Surf. Sci. 258, 2219–2225 (2012). doi: 10.1016/j.apsusc.2011.08.017 CrossRefGoogle Scholar
  34. 34.
    A. Khan, A.A.P. Khan, A.M. Asiri, M.A. Rub, M.M. Rahman, S.A. Ghani, In vitro studies of carbon fiber microbiosensor for dopamine neurotransmitter supported by copper-graphene oxide composite. Microchim. Acta 181, 1049–1057 (2014). doi: 10.1007/s00604-014-1202-0 CrossRefGoogle Scholar
  35. 35.
    J. Bai, L. Wu, X. Wang, H.M. Zhang, Hemoglobin-graphene modified carbon fiber microelectrode for direct electrochemistry and electrochemical H2O2 sensing. Electrochim. Acta 185, 142–147 (2015). doi: 10.1016/j.electacta.2015.10.100 CrossRefGoogle Scholar
  36. 36.
    J. Bai, P. Qi, X. Ding, H. Zhang, Graphene composite coated carbon fiber: electrochemical synthesis and application in electrochemical sensing. RSC Adv. 6, 11250–11255 (2016). doi: 10.1039/c5ra26620c CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.School of Engineering and Materials Science, and Materials Research Institute, Queen Mary University of LondonLondonUK
  2. 2.Nanoforce Technology Ltd., Queen Mary University of LondonLondonUK

Personalised recommendations