Skip to main content

Microscale Characterization Techniques of Fibre-Reinforced Polymers

  • Chapter
  • First Online:
The Structural Integrity of Carbon Fiber Composites

Abstract

Polymer matrices reinforced with structural fibres as carbon, glass or aramid (fibre-reinforced polymers or FRPs) possess excellent specific mechanical properties as strength and stiffness. As a result, structural composites are commonly used in applications driven by weight reduction in aerospace, although they are continuously expanding to other industrial sectors, such as automotive, energy, sports or civil engineering. Excellent examples of carbon composite applications in aerospace are found in the last two civil airplanes developed by Airbus and Boeing, the A350 and 787 Dreamliner, respectively, in which composites made up to 50 % in weight of structural parts ranging from fuselage barrels or wings to stabilizers. However, despite the increasing number of engineering applications of structural composites, the accurate prediction of their mechanical behaviour still remains an arduous task because of the complexity of the failure mechanisms involved, specially at the microscopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. LLorca et~al., Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv. Mater. 23, 5130–5147 (2011)

    Google Scholar 

  2. J. LLorca, C. González, J.M. Molina-Aldareguía, C.S. Lopes, Multiscale modeling of composites. Towards virtual testing … beyond. JOM 65, 215–225 (2013)

    Google Scholar 

  3. C. González, J. LLorca, Multiscale modeling of fracture in fiber-reinforced composites. Acta Mater. 54, 4171–4181 (2006)

    Article  Google Scholar 

  4. C. González, J. LLorca, Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling. Compos. Sci. Technol. 67, 2795–2806 (2007)

    Article  Google Scholar 

  5. C. González, J. LLorca, Virtual fracture testing of composites: a computational micromechanics approach. Eng. Fract. Mech. 74, 1126–1138 (2007)

    Article  Google Scholar 

  6. L.P. Canal, C. González, J. Segurado, J. LLorca, Intraply fracture of fiber-reinforced composites: microscopic mechanisms and modeling. Compos. Sci. Technol. 72, 1223–1232 (2012)

    Article  Google Scholar 

  7. L.P. Canal, C. González, J.M. Molina-Aldareguía, J. Segurado, J. LLorca, Application of digital image correlation at the microscale in fiber-reinforced composites. Compos. A 43, 1630–1638 (2012)

    Article  Google Scholar 

  8. J. Segurado, J. LLorca, A numerical approximation to the elastic properties of sphere-reinforced composites. J. Mech. Phys. Solids 50, 2107–2121 (2002)

    Google Scholar 

  9. A.R. Melro, P.P. Camanho, S.T. Pinho, Generation of random distribution of fibres in long-fibre reinforced composites. Compos. Sci. Technol. 68, 2092–2102 (2008)

    Article  Google Scholar 

  10. D. Trias, J. Costa, A. Turón, J. Hurtado, Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers. Acta Mater. 54, 3471–3484 (2006)

    Article  Google Scholar 

  11. T.J. Vaughan, C.T. McCarthy, A combined experimental–numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials. Compos. Sci. Technol. 70, 291–297 (2010)

    Article  Google Scholar 

  12. E. Totry, C. González, J. LLorca, Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear. Compos. Sci. Technol. 68, 829–839 (2008)

    Article  Google Scholar 

  13. E. Totry, C. González, J. LLorca, Influence of the loading path on the strength of fiber-reinforced composites subjected to transverse compression and shear. Int. J. Solids Struct. 45, 1663–1675 (2008)

    Article  Google Scholar 

  14. E. Totry, C. González, J. LLorca, Prediction of the failure locus of C/PEEK composites under transverse compression and longitudinal shear through computational micromechanics. Compos. Sci. Technol. 68, 3128–3136 (2008)

    Article  Google Scholar 

  15. E. Totry, C. González, J. LLorca, J.M. Molina-Aldareguía, Mechanisms of shear deformation in fiber-reinforced polymers: experiments and simulations. Int. J. Fract. 158, 197–209 (2009)

    Article  Google Scholar 

  16. E. Totry, J.M. Molina-Aldareguía, C. González, J. LLorca, Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites. Compos. Sci. Technol. 70, 970–980 (2010)

    Article  Google Scholar 

  17. M. Herráez, A. Fernández, C.S. Lopes, C. González, Strength and toughness of structural fibres for composite material reinforcement. Philos. Trans. R. Soc. A 374, 20150274 (2016)

    Article  Google Scholar 

  18. M. Kant, D. Penumadu, Fracture behavior of individual carbon fibres in tension using nano-fabricated notches. Compos. Sci. Technol. 89, 83–88 (2013)

    Article  Google Scholar 

  19. S. Ogihara, Y. Imafuku, R. Yamamoto, Y. Kogo, Application of FIB technique to introduction of a notch into a carbon fiber for direct measurement of fracture toughness. J. Phys. Conf. Ser. 191, (2009)

    Google Scholar 

  20. D. Tabor, Hardness of Metals (Clarendom Press, Oxford, 1951)

    Google Scholar 

  21. M. Rodríguez, J.M. Molina-Aldareguía, C. González, J. LLorca, Determination of the mechanical properties of amorphous materials through instrumented nanoindentation. Acta Mater. 60, 3953–3964 (2012)

    Article  Google Scholar 

  22. J. Alkorta, J.M. Martínez-Esnaola, J. Gil Sevillano, J. Mater Res 20, 432 (2005)

    Article  Google Scholar 

  23. O. Oliver, G. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  Google Scholar 

  24. Y.T. Cheng, C.M. Cheng, Effects of ‘sinking in’ and ‘piling up’ on estimating the contact area under load in indentation. Philos. Mag. Lett. 78, 115–120 (1998)

    Article  Google Scholar 

  25. A.J. Kinloch, R.J. Young, Fracture Behaviour of Polymers (Elsevier Applied Science, London, 1983)

    Google Scholar 

  26. D.C. Drucker, W. Prager, Soil mechanics and plastic analysis for limit design. Q. Appl. Math. 10, 157 (1952)

    Google Scholar 

  27. R. Quinson, J. Pérez, M. Rink, A. Pavan, Yield criteria for amorphous glassy polymers. J.~Mater. Sci. 32, 1371–1379 (1997)

    Google Scholar 

  28. S. Lotfian, M. Rodríguez, Y.E. Yazzie, N. Chawla, J. LLorca, J.M. Molina-Aldareguía, High temperature micropillar compression of Al/SiC nanolaminates. Acta Mater. 61, 4439–4451 (2013)

    Article  Google Scholar 

  29. J.H. Kim, S.J. Jeong, H.J. Lee, S.W. Han, B.I. Choi, S.H. Park et~al., Linear analysis of the viscoelastic response of polymer micro-pillars using the open-loop flat punch indentation test. Philos. Mag. 86, 5679–5690 (2006)

    Google Scholar 

  30. D.R.P. Singh, N. Chawla, G. Tang, Y.L. Shen, Micropillar compression of Al/SiC nanolaminates. Acta Mater. 58, 6628–6636 (2010)

    Article  Google Scholar 

  31. H. Fei, A. Abraham, N. Chawla, H. Jiang, Evaluation of micro-pillar compression tests for accurate determination of elastic-plastic constitutive relations. J. Appl. Mech. 79, 061011 (2012)

    Article  Google Scholar 

  32. Y. Yang, J.C. Ye, J. Lu, F.X. Liu, P.K. Liaw, Effects of specimen geometry and base material on the mechanical behavior of focused-ion-beam-fabricated metallic-glass micropillars. Acta Mater. 57, 1613–1623 (2009)

    Article  Google Scholar 

  33. S. Wang, Y. Yang, L.M. Zhou, Y.W. Mai, Size effect in microcompression of epoxy micropillars. J. Mater. Sci. 47, 6047–6055 (2012)

    Article  Google Scholar 

  34. A. Kelly, W.R. Tyson, Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids 13, 329–338 (1965)

    Article  Google Scholar 

  35. L.J. Broutmari, Measurement of the fiber–polymer matrix interfacial strength Interfaces in composites. ASTM Int. 452, 27 (1969)

    Google Scholar 

  36. B. Miller, P. Muri, L. Rebenfeld, A microbond method for determination of the shear strength of a fiber/resin interface. Compos. Sci. Technol. 28, 17–32 (1987)

    Article  Google Scholar 

  37. M. Kharrat, A. Chateauminois, L. Carpentier, P. Kapsa, On the interfacial behaviour of a glass/epoxy composite during a micro-indentation test: assessment of interfacial shear strength using reduced indentation curves. Compos. A Appl. Sci. Manuf. 28, 39–46 (1997)

    Article  Google Scholar 

  38. J.M. Molina-Aldaregua, M. Rodrguez, C. González, J. LLorca, An experimental and numerical study of the influence of local effects on the application of the fibre push-in test. Philos. Mag. 91, 1293–1307 (2011)

    Google Scholar 

  39. M. Rodríguez, J.M. Molina-Aldareguía, C. González, J. LLorca, A methodology to measure the interface shear strength by means of the fiber push-in test. Compos. Sci. Technol. 72, 1924–1932 (2012)

    Article  Google Scholar 

  40. S. Ogihara, J. Koyanagi, Investigation of combined stress state failure criterion for glass fiber/epoxy interface by the cruciform specimen method’. Compos. Sci. Technol. 70, 143–150 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This chapter summarizes the results obtained in a number of research projects supported by the Spanish Ministry of Economy and Competitiveness, the Seventh Framework Programme of the European Union and Airbus. We gratefully acknowledge their support. In addition, we acknowledge the contributions from the graduate students and postdoctoral associates from our research groups, specially Dr. Marcos Rodríguez and Dr. Luis Pablo Canal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herráez, M. et al. (2017). Microscale Characterization Techniques of Fibre-Reinforced Polymers. In: Beaumont, P., Soutis, C., Hodzic, A. (eds) The Structural Integrity of Carbon Fiber Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-46120-5_10

Download citation

Publish with us

Policies and ethics