Skip to main content

Resistance to Tyrosine Kinase Inhibitors in Different Types of Solid Cancer

  • Chapter
  • First Online:
  • 558 Accesses

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT))

Abstract

Development of therapeutic resistance limits the efficacy of current cancer treatment. Understanding the molecular basis for therapeutic resistance should facilitate the identification of actionable targets and development of new combination therapies for cancer patients. Although extensive studies have been applied to elucidate the underlying mechanisms, evidence is far from enough to establish a well-defined picture to correct resistance. The unveiling point mutations within the kinase domain, gene amplification or overexpression, or modification of signaling pathway have been implicated in drug resistance. In the review, we will describe different currently developed strategies that have the potential to overcome drug resistance in different types of cancer therapies and facilitate prolonged anticancer effects of the first-line therapies. The knowledge obtained from these studies will allow to design better strategies to offer significant challenges on the path towards superior cancer treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AIO:

Arbeitsgemeinschaft Internistische Onkologie

AIP5:

Apoptosis inhibitory protein 5

ATP:

Adenosine triphosphate

Bcl-2:

B-cell lymphoma 2

BCR-ABL:

Breakpoint cluster region-Abelson

BIRC2:

Baculoviral IAP repeat-containing 2

B-Raf:

v-Raf murine sarcoma viral oncogene homolog B

CBL:

Casitas B-lineage lymphoma

Cdk:

Cyclin-dependent kinase

c-FLIP:

Caspase 8 and FAS-associated protein with death domain-like apoptosis regulator

CI:

Confidence interval

CR:

Complete response

CREB:

cAMP-responsive element binding protein

CRTC2:

CREB-regulated transcription coactivator 2

CXCR4:

C-S-C chemokine receptor type 4

CYP3A4:

Cytochrome P450 3A4

DDR1:

Discoidin domain receptor 1

DFS:

Disease free survival

EGFR:

Epidermal growth factor receptor

ErbB2:

Epidermal growth factor receptor II (Her 2)

EREG:

Epiregulin

EZH2:

Enhancer of zeste homolog 2

FGF2:

Fibroblast growth factor

FLT1:

FMI-like tyrosine kinase 1

FLT3:

FMS-like tyrosine kinase 3

FOLFIRI:

Folinic acid, Fluorouracil and Irinotecan

FOLFOX:

Folinic acid (FA)-Fluorouracil (5FU)-Oxaliplatin (OX)

FOXO3a:

Forkhead box O3 isoform a

GDNFR:

Glial-cell-line-derived neurotrophic factor receptor

GSK:

Glycogen synthase kinase

H2AFX:

H2A histone family-member X

HR:

Hazard ratio

HRG:

Heregulin HGFR hepatocyte growth factor receptor

IGFR 1:

Insulin-like growth factor receptor 1

IgG:

Immunoglobulin G

IRS-1:

Insulin receptor substrate 1

JAK:

Janus kinase

KDR:

Kinase insert domain-containing receptor tyrosine kinase

LA-HNSCC:

Locally advanced head and neck squamous cell carcinoma

LOH:

Loss of heterozygosity

m-AMSA:

4′-(9-Acridinylamino)methanesulfon-m-aniside

MET:

Mesenchymal epithelial transition

MMR:

DNA mismatch repair

MR:

Minor response

MSI:

Microsatellite instability

MTD:

Maximum tolerated dose

p27kip1 (p27):

A cyclin-dependent kinase inhibitor

p70S6K:

(p70) S6 kinase

PDGFR:

Platelet-derived growth factor receptor

PIK3CA:

Phosphatidylinositol 3-kinase catalytic subunit

PLGF:

Placental growth factor

PR:

Partial response

RR:

Relative risk

SCFR:

Stem cell factor receptor

SD:

Stable disease

SDF-1:

Stromal-derived-factor-1

siRNA:

Small interfering RNA

Skp2:

S-phase kinase-associated protein 2

TAM:

Tyro3/Axl/Mer

TGF-α:

Transforming growth factor α

TOPO-II:

Topoisomerase-II

TRIAP1:

TP53 regulated inhibitor of apoptosis 1

VEGFR:

Vascular endothelial growth factor receptors

References

  1. Levitzki A, Mishani E. Tyrphostins and other tyrosine kinase inhibitors. Annu Rev Biochem. 2006;75:93–109.

    Article  CAS  PubMed  Google Scholar 

  2. Crean S, Boyd DM, Sercus B, Lahn M. Safety of multi-targeted kinase inhibitors as monotherapy treatment of cancer: a systematic review of the literature. Curr Drug Saf. 2009;4:143–54.

    Article  PubMed  Google Scholar 

  3. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7:3129–40.

    Article  CAS  PubMed  Google Scholar 

  4. Blanke CD, Corless CL. State-of-the art therapy for gastrointestinal stromal tumors. Cancer Invest. 2005;23:274–80.

    Article  PubMed  Google Scholar 

  5. Ravegnini G, Nannini M, Sammarini G, et al. Personalized medicine in gastrointestinal stromal tumor (GIST): clinical implications of the somatic and germline DNA analysis. Int J Mol Sci. 2015;16:15592–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moy B, Goss PE. Lapatinib: current status and future directions in breast cancer. Oncologist. 2006;11:1047–57.

    Article  CAS  PubMed  Google Scholar 

  7. Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem. 2000;69:373–98.

    Article  CAS  PubMed  Google Scholar 

  8. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411:355–65.

    Article  CAS  PubMed  Google Scholar 

  9. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2002;103:211–25.

    Article  Google Scholar 

  10. Hunter T. Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol. 2009;21:140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Edelman AM, Blumenthal DK, Krebs EG. Protein serine/threonine kinases. Annu Rev Biochem. 1987;56:567–613.

    Article  CAS  PubMed  Google Scholar 

  12. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203–12.

    Article  CAS  PubMed  Google Scholar 

  13. Yarden Y, Ullrich A. Growth factor receptor tyrosine kinases. Annu Rev Biochem. 1988;57:443–78.

    Article  CAS  PubMed  Google Scholar 

  14. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    Article  CAS  PubMed  Google Scholar 

  15. Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19:5548–57.

    Article  CAS  PubMed  Google Scholar 

  16. Knuutila S, Bjorkqvist AM, Autio K, et al. DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am J Pathol. 1998;152:1107–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Collett MS, Erikson RL. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci U S A. 1978;75:2021–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stehelin D. The transforming gene of avian tumor viruses. Pathol Biol (Paris). 1976;24:513–5.

    CAS  Google Scholar 

  19. Hunter T. Protein phosphorylated by the RSV transforming function. Cell. 1980;22:647–8.

    Article  CAS  PubMed  Google Scholar 

  20. Hunter T, Sefton BM. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A. 1980;77:1311–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Varmus H, Bishop JM. Biochemical mechanisms of oncogene activity: proteins encoded by oncogenes. Introduction. Cancer Surv. 1986;5:153–8.

    CAS  PubMed  Google Scholar 

  22. Downward J, Yarden Y, Mayes E, et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature. 1984;307:521–7.

    Article  CAS  PubMed  Google Scholar 

  23. Ullrich A, Coussens L, Hayflick JS, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature. 1984;309:418–25.

    Article  CAS  PubMed  Google Scholar 

  24. Chazin VR, Kaleko M, Miller AD, Slamon DJ. Transformation mediated by the human HER-2 gene independent of the epidermal growth factor receptor. Oncogene. 1992;7:1859–66.

    CAS  PubMed  Google Scholar 

  25. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  CAS  PubMed  Google Scholar 

  26. DiGiovanna MP, Stern DF, Edgerton SM, Whalen SG, Moore 2nd D, Thor AD. Relationship of epidermal growth factor receptor expression to ErbB-2 signaling activity and prognosis in breast cancer patients. J Clin Oncol. 2005;23:1152–60.

    Article  CAS  PubMed  Google Scholar 

  27. Tsatsanis C, Spandidos DA. Oncogenic kinase signaling in human neoplasms. Ann N Y Acad Sci. 2004;1028:168–75.

    Article  CAS  PubMed  Google Scholar 

  28. Hunter T. A thousand and one protein kinases. Cell. 1987;50:823–9.

    Article  CAS  PubMed  Google Scholar 

  29. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hunter T. Signaling-2000 and beyond. Cell. 2000;100:113–27.

    Article  CAS  PubMed  Google Scholar 

  31. Fendly BM, Winget M, Hudziak RM, Lipari MT, Napier MA, Ullrich A. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res. 1990;50:1550–8.

    CAS  PubMed  Google Scholar 

  32. Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol. 1989;9:1165–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sasaki T, Hiroki K, Yamashita Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed Res Int. 2013;2013:546318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bazley LA, Gullick WJ. The epidermal growth factor receptor family. Endocr Relat Cancer. 2005;12(Suppl):S17–27.

    Article  CAS  PubMed  Google Scholar 

  35. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.

    Article  CAS  PubMed  Google Scholar 

  36. Goldberg RM. Cetuximab. Nat Rev Drug Discov. 2005;Suppl:S10–1.

    Google Scholar 

  37. Yang B, Lum P, Chen A, et al. Pharmacokinetic and pharmacodynamic perspectives on the clinical drug development of panitumumab. Clin Pharmacokinet. 2010;49:729–40.

    Article  CAS  PubMed  Google Scholar 

  38. Giannopoulou E, Antonacopoulou A, Matsouka P, Kalofonos H. Autophagy: novel action of panitumumab in colon cancer. Anticancer Res. 2009;29:5077–82.

    CAS  PubMed  Google Scholar 

  39. Keating G. Panitumumab: a review of its use in metastatic colorectal cancer. Drugs 2010;0:1059–78.

    Google Scholar 

  40. Hocking CM, Price TJ. Panitumumab in the management of patients with KRAS wild-type metastatic colorectal cancer. Therap Adv Gastroenterol. 2014;7:20–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robinson KW, Sandler AB. EGFR tyrosine kinase inhibitors: difference in efficacy and resistance. Curr Oncol Rep. 2013;15:396–404.

    Article  CAS  PubMed  Google Scholar 

  42. O’Donnell P, Ferguson J, Shyu J, et al. Analytic performance studies and clinical reproducibility of a real-time PCR assay for the detection of epidermal growth factor receptor gene mutations in formalin-fixed paraffin-embedded tissue specimens of non-small cell lung cancer. BMC Cancer. 2013;13:210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Dragovich T, McCoy S, Fenoglio-Preiser CM, et al. Phase II trial of erlotinib in gastroesophageal junction and gastric adenocarcinomas: SWOG 0127. J Clin Oncol. 2006;24:4922–7.

    Article  CAS  PubMed  Google Scholar 

  44. Wainberg ZA, Lin LS, DiCarlo B, et al. Phase II trial of modified FOLFOX6 and erlotinib in patients with metastatic or advanced adenocarcinoma of the oesophagus and gastro-oesophageal junction. Br J Cancer. 2011;105:760–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schilder RJ, Sill MW, Lee YC, Mannel R. A phase II trial of erlotinib in recurrent squamous cell carcinoma of the cervix: a gynecologic oncology group study. Int J Gynecol Cancer. 2009;19:929–33.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gordon MS, Hussey M, Nagle RB, et al. Phase II study of erlotinib in patients with locally advanced or metastatic papillary histology renal cell cancer: SWOG S0317. J Clin Oncol. 2009;27:5788–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: Reasons for phase III failure and novel perspectives on trial design. Clin Cancer Res. 2014;20:2072–9.

    Article  CAS  PubMed  Google Scholar 

  48. Hojjat-Farsangi M. Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies. Int J Mol Sci. 2014;15:13768–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rusnak DW, Lackey K, Affleck K, et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther. 2001;1:85–94.

    CAS  PubMed  Google Scholar 

  50. Xia W, Mullin RJ, Keith BR, et al. Anti-tumor activity of GW572016: A dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene. 2002;21:6255–63.

    Article  CAS  PubMed  Google Scholar 

  51. Food and Drug Administration. FDA labelling information [online]. (2007). http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation

  52. Fry DW, Bridges AJ, Denny WA, et al. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc Natl Acad Sci U S A. 1998;95:12022–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smaill JB, Palmer BD, Rewcastle GW, et al. Tyrosine kinase inhibitors. 15. 4-(Phenylamino)quinazoline and 4-(phenylamino)pyrido[d]pyrimidine acrylamides as irreversible inhibitors of the ATP binding site of the epidermal growth factor receptor. J Med Chem. 1999;42:1803–15.

    Article  CAS  PubMed  Google Scholar 

  54. Djerf EA, Trinks C, Abdiu A, Thunell LK, Hallbeck AL, Walz TM. ErbB receptor tyrosine kinases contribute to proliferation of malignant melanoma cells: inhibition by gefitinib (ZD1839). Melanoma Res. 2009;19:156–66.

    Article  CAS  PubMed  Google Scholar 

  55. Djerf Severinsson EA, Trinks C, Gréen H, et al. The pan-ErbB receptor tyrosine kinase inhibitor canertinib promotes apoptosis of malignant melanoma in vitro and displays anti-tumor activity in vivo. Biochem Biophys Res Commun. 2011;414:563–8.

    Article  CAS  PubMed  Google Scholar 

  56. Ako E, Yamashita Y, Ohira M, et al. The pan-erbB tyrosine kinase inhibitor CI-1033 inhibits human esophageal cancer cells in vitro and in vivo. Oncol Rep. 2007;17:887–93.

    CAS  PubMed  Google Scholar 

  57. Nyati MK, Maheshwari D, Hanasoge S, et al. Radiosensitization by pan ErbB inhibitor CI-1033 in vitro and in vivo. Clin Cancer Res. 2004;10:691–700.

    Article  CAS  PubMed  Google Scholar 

  58. Slichenmyer WJ, Elliott WL, Fry DW. CI-1033, a pan-erbB tyrosine kinase inhibitor. Semin Oncol. 2001;28:80–5.

    Article  CAS  PubMed  Google Scholar 

  59. Rixe O, Franco SX, Yardley DA, et al. A randomized, phase II, dose-finding study of the pan-ErbB receptor tyrosine-kinase inhibitor CI-1033 in patients with pretreated metastatic breast cancer. Cancer Chemother Pharmacol. 2009;64:1139–48.

    Article  CAS  PubMed  Google Scholar 

  60. Janne PA, von Pawel J, Cohen RB, et al. Multicenter, randomized, phase II trial of CI-1033, an irreversible pan-ERBB inhibitor, for previously treated advanced non small cell lung cancer. J Clin Oncol. 2007;25:3936–44.

    Article  CAS  PubMed  Google Scholar 

  61. Irwin ME, Nelson LD, Santiago-O’Farrill JM, et al. Small molecule ErbB inhibitors decrease proliferative signaling and promote apoptosis in Philadelphia chromosome-positive acute lymphoblastic leukemia. PLoS One. 2013;8, e70608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fabian MA, Biggs 3rd WH, Treiber DK, et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol. 2005;23:329–36.

    Article  CAS  PubMed  Google Scholar 

  63. Dorsey K, Agulnik M. Promising new molecular targeted therapies in head and neck cancer. Drugs. 2013;73:315–25.

    Article  CAS  PubMed  Google Scholar 

  64. Engelman JA, Zejnullahu K, Gale CM, et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 2007;67:11924–32.

    Article  CAS  PubMed  Google Scholar 

  65. Gonzales AJ, Hook KE, Althaus IW, et al. Antitumor activity and pharmacokinetic properties of PF-00299804, a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor. Mol Cancer Ther. 2008;7:1880–9.

    Article  CAS  PubMed  Google Scholar 

  66. Janne PA, Boss DS, Camidge DR, et al. Phase I dose-escalation study of the pan-HER inhibitor, PF-00299804, in patients with advanced malignant solid tumors. Clin Cancer Res. 2011;17:1131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Takahashi T, Boku N, Murakami H, et al. Phase I and pharmacokinetic study of dacomitinib (PF-00299804), an oral irreversible, small molecule inhibitor of human epidermal growth factor receptor-1, -2, and -4 tyrosine kinases, in Japanese patients with advanced solid tumors. Invest New Drugs. 2012;30:2352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ramalingam SS, Jänne PA, Mok TS, et al. Dacomitinib versus erlotinib in patients with advanced-stage, previously treated non-small-cell lung cancer (ARCHER 1009): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:1369–78.

    Article  CAS  PubMed  Google Scholar 

  69. Park K, Heo DS, Cho B, et al. PF-00299804 (PF299) in Asian patients (pts) with non-small cell lung cancer (NSCLC) refractory to chemotherapy (CT) and erlotinib (E) or gefitinib (G): a phase (P) I/II study. J Clin Oncol. 2010;28 Suppl:abstract 7599.

    Google Scholar 

  70. Boyer MJ, Blackhall FH, Park K, et al. Efficacy and safety of PF299804 versus erlotinib: a global randomized phase 2 trial in patients with advanced non-small cell lung cancer (NSCLC) after failure of chemotherapy (CT). Oral presentation at: the 46th Annual Meeting of the American Society of Clinical Oncology, Chicago, IL, USA, 2010; June 4–8.

    Google Scholar 

  71. Kris MG, Mok T, Ou SH, et al. First-line dacomitinib (PF-00299804), an irreversible pan-HER tyrosine kinase inhibitor, for patients with EGFR-mutant lung cancers. J Clin Oncol. 2012:30 Suppl: abstract 7530.

    Google Scholar 

  72. Ruiz-Garcia A, Janne PA, Park K, et al. EGFR status and daily dose: Effect on tumor growth inhibition in cancer patients treated with dacomitinib (PF-00299804). J Clin Oncol. 2012;30 Suppl: abstract e18093.

    Google Scholar 

  73. Li D, Ambrogio L, Shimamura T, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008;27:4702–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Metro G, Crinò L. The LUX-Lung clinical trial program of afatinib for non-small-cell lung cancer. Expert Rev Anticancer Ther. 2011;11:673–82.

    Article  CAS  PubMed  Google Scholar 

  75. clinicaltrials.gov. LUX-Breast 2; Afatinib in HER2 (Human Epidermal Growth Factor Receptor)-treatment failures NCT01271725 (2011–2016).

    Google Scholar 

  76. clinicaltrials.gov. 6 weeks treatment of locally advanced breast cancer with BIBW 2992 (Afatinib) or Lapatinib or Trastuzumab NCT00826267. http://www.clinicaltrials.gov/ct2/show/NCT00826267. Accessed 2 Feb 2012.

  77. clinicaltrials.gov. Afatinib (BIBW2992) in HER2-overexpressing inflammatory breast cancer NCT013254 (2011–2016).

    Google Scholar 

  78. clinicaltrials.gov. LUX-Breast 1: BIBW 2992 (Afatinib) in HER2-positive metastatic breast cancer patients after one prior herceptin treatment NCT01125566 (2010–2016).

    Google Scholar 

  79. Rabindran SK, Discafani CM, Rosfjord EC, et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Can Res. 2004;64:3958–65.

    Article  CAS  Google Scholar 

  80. Burstein HJ, Sun Y, Dirix LY, et al. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J Clin Oncol. 2010;28:1301–7.

    Article  CAS  PubMed  Google Scholar 

  81. clinicaltrials.gov. Study evaluating the effects of neratinib after adjuvant trastuzumab in women with early stage breast cancer (ExteNET) NCT00878709. http://clinicaltrials.gov/ct2/show/NCT00878709. Accessed 1 Apr 2012.

  82. clinicaltrials.gov. A phase 1/2 study of HKI-272 (Neratinib) in combination with paclitaxel (taxol) in subjects with solid tumors and breast cancer NCT00445458. http://clinicaltrials.gov/ct2/show/NCT00445458. Accessed 1 Apr 2012.

  83. clinicaltrials.gov. A phase 1/2 Study Of HKI-272 (Neratinib) in combination with trastuzumab (herceptin) in subjects with advanced breast cancer NCT00398567. http://clinicaltrials.gov/ct2/show/NCT00398567. Accessed 1 Apr 2012.

  84. clinicaltrials.gov. Study evaluating neratinib plus paclitaxel vs trastuzumab plus paclitaxel in ErbB-2 positive advanced breast cancer (NEFERTT) NCT00915018. http://clinicaltrials.gov/ct2/show/NCT00915018. Accessed 1 Apr 2012.

  85. clinicaltrials.gov. Study evaluating neratinib versus lapatinib plus capecitabine for ErbB2 positive advanced breast cancer NCT00777101. http://clinicaltrials.gov/ct2/show/NCT00777101. Accessed 1 Apr 2012.

  86. Berger C, Krengel U, Stang E, Moreno E, Madshus IH. Nimotuzumab and cetuximab block ligand-independent EGF receptor signaling efficiently at different concentrations. J Immunother. 2011;34:550–5.

    Article  CAS  PubMed  Google Scholar 

  87. Solomon MT, Selva IC, Figueredo J, et al. Radiotherapy plus nimotuzumab or placebo in the treatment of high grade glioma patients: results from a randomized, double blind trial. BMC Cancer. 2013;13:299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Heinrich MC, Griffith D, McKinley A, et al. Crenolanib inhibits the drug-resistant PDGFRA D842V mutation associated with imatinib-resistant gastrointestinal stromal tumors. Clin Cancer Res. 2012;18:4375–84.

    Article  CAS  PubMed  Google Scholar 

  89. Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res. 2002;62:3729–35.

    CAS  PubMed  Google Scholar 

  90. Dong J, Grunstein J, Tejada M, et al. VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. Embo J. 2004;23:2800–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pietras K, Pahler J, Bergers G, Hanahan D. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med. 2008;5, e19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Puputti M, Tynninen O, Sihto H, et al. Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol Cancer Res. 2006;4:927–34.

    Article  CAS  PubMed  Google Scholar 

  93. Ostman A, Heldin CH. PDGF receptors as targets in tumor treatment. Adv Cancer Res. 2007;97:247–74.

    Article  PubMed  CAS  Google Scholar 

  94. Jain RK, Lahdenranta J, Fukumura D. Targeting PDGF signaling in carcinoma-associated fibroblasts controls cervical cancer in mouse model. PLoS Med. 2008;5, e24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Thomson S, Petti F, Sujka-Kwok I, Epstein D, Haley JD. Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. Clin Exp Metastasis. 2008;25:843–54.

    Article  CAS  PubMed  Google Scholar 

  96. Ehnman M, Missiaglia E, Folestad E, et al. Distinct effects of ligand-induced PDGFRα and PDGFRβ signaling in the human rhabdomyosarcoma tumor cell and stroma cell compartments. Cancer Res. 2013;73:2139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hayashi Y, Bardsley MR, Toyomasu Y, et al. Platelet-derived growth factor receptor-α regulates proliferation of gastrointestinal stromal tumor cells with mutations in KIT by stabilizing ETV1. Gastroenterology. 2015;149:420–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brooks AN, Kilgour E, Smith PD. Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res. 2012;18:1855–62.

    Article  CAS  PubMed  Google Scholar 

  99. Wesche J, Haglund K, Haugsten EM. Fibroblast growth factors and their receptors in cancer. Biochem J. 2011;437:199–213.

    Article  CAS  PubMed  Google Scholar 

  100. Taylor JG, Cheuk AT, Tsang PS, et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J Clin Invest. 2009;119:3395–407.

    CAS  PubMed  Google Scholar 

  101. Tanner Y, Grose RP. Dysregulated FGF signalling in neoplastic disorders. Semin Cell Dev Biol. 2015; pii: S1084-9521(15)00209-8.

    Google Scholar 

  102. Gelsi-Boyer V, Orsetti B, Cervera N, Finetti P, et al. Comprehensive profiling of 8p11-12 amplification in breast cancer. Mol Cancer Res. 2005;3:655–67.

    Google Scholar 

  103. Turner N, Lambros MB, Horlings HM, et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene. 2010;20:2013–23.

    Article  CAS  Google Scholar 

  104. Mohammadi M, Froum S, Hamby JM, et al. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J. 1998;17:5896–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Koziczak M, Holbro T, Hynes NE. Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulation of D-type cyclins. Oncogene. 2004;23:3501–8.

    Article  CAS  PubMed  Google Scholar 

  106. Buchler P, Reber HA, Roth MM, Shiroishi M, Friess H, Hines OJ. Target therapy using a small molecule inhibitor against angiogenic receptors in pancreatic cancer. Neoplasia. 2007;9:119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dey JH, Bianchi F, Voshol J, Bonenfant D, Oakeley EJ, Hynes NE. Targeting fibroblast growth factor receptors blocks PI3K/AKT signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis. Cancer Res. 2010;70:4151–62.

    Article  CAS  PubMed  Google Scholar 

  108. Sarker D, Molife R, Evans TR, et al. A phase I pharmacokinetic and pharmacodynamic study of TKI258, an oral, multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors. Clin Cancer Res. 2008;14:2075–81.

    Article  CAS  PubMed  Google Scholar 

  109. Shimada T, Urakawa I, Yamazaki Y, et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun. 2004;314:409–14.

    Article  CAS  PubMed  Google Scholar 

  110. Dean M, Park M, Liu W, et al. The human met oncogene is related to the tyrosine kinase oncogenes. Nature. 1985;318:385–8.

    Article  CAS  PubMed  Google Scholar 

  111. Boon EM, van der Neut R, van de Wetering M, Clevers H, Pals ST. Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer. Cancer Res. 2002;62:5126–8.

    CAS  PubMed  Google Scholar 

  112. Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7:504–16.

    Article  CAS  PubMed  Google Scholar 

  113. Tsao MS, Yang Y, Marcus A, Liu N, Mou L. Hepatocyte growth factor is predominantly expressed by the carcinoma cells in non-small-cell lung cancer. Hum Pathol. 2001;32:57–65.

    Article  CAS  PubMed  Google Scholar 

  114. Trusolino L, Comoglio PM. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer. 2002;2:289–300.

    Article  CAS  PubMed  Google Scholar 

  115. Love CA, Harlos K, Mavaddat N, et al. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat Struct Biol. 2003;10:843–8.

    Article  CAS  PubMed  Google Scholar 

  116. Gherardi E, Love CA, Esnouf RM, Jones EY. The sema domain. Curr Opin Struct Biol. 2004;14:669–78.

    Article  CAS  PubMed  Google Scholar 

  117. Kong-Beltran M, Stamos J, Wickramasinghe D. The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell. 2004;6:75–84.

    Article  CAS  PubMed  Google Scholar 

  118. Stamos J, Lazarus RA, Yao X, Kirchhofer D, Wiesmann C. Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO J. 2004;23:2325–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wickramasinghe D, Kong-Beltran M. Met activation and receptor dimerization in cancer: a role for the Sema domain. Cell Cycle. 2005;4:683–5.

    Article  CAS  PubMed  Google Scholar 

  120. Olivero M, Valente G, Bardelli A, et al. Novel mutation in the ATP-binding site of the MET oncogene tyrosine kinase in a HPRCC family. Int J Cancer. 1999;82:640–3.

    Article  CAS  PubMed  Google Scholar 

  121. Schmidt L, Junker K, Nakaigawa N, et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999;18:2343–50.

    Article  CAS  PubMed  Google Scholar 

  122. Giordano S, Maffe A, Williams TA, et al. Different point mutations in the met oncogene elicit distinct biological properties. FASEB J. 2000;14:399–406.

    CAS  PubMed  Google Scholar 

  123. Lee JH, Han SU, Cho H, et al. A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene. 2000;19:4947–53.

    Article  CAS  PubMed  Google Scholar 

  124. Ma PC, Tretiakova MS, MacKinnon AC, et al. Expression and mutational analysis of MET in human solid cancers. Genes Chromosomes Cancer. 2008;47:1025–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Seiwert TY, Jagadeeswaran R, Faoro L, et al. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 2009;69:3021–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stella GM, Benvenuti S, Gramaglia D, et al. MET mutations in cancers of unknown primary origin (CUPs). Hum Mutat. 2011;32:44–50.

    Article  CAS  PubMed  Google Scholar 

  127. Lutterbach, Zeng Q, Davis LJ, et al. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res. 2007;67:2081–8.

    Google Scholar 

  128. Peschard P, Fournier TM, Lamorte L, et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell. 2001;8:995–1004.

    Article  CAS  PubMed  Google Scholar 

  129. Zeng ZS, Weiser MR, Kuntz E, et al. c-Met gene amplification is associated with advanced stage colorectal cancer and liver metastases. Cancer Lett. 2008;265:258–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cappuzzo F, Jänne PA, Skokan M, et al. MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann Oncol. 2009;20:298–304.

    Article  CAS  PubMed  Google Scholar 

  131. Go H, Jeon YK, Park HJ, Sung SW, Seo JW, Chung DH. High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer. J Thorac Oncol. 2010;5:305–13.

    Article  PubMed  Google Scholar 

  132. Zou HY, Li Q, Lee JH, et al. An orally available small-molecule inhibitor of c-Met, PF- 2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 2007;67:4408–17.

    Article  CAS  PubMed  Google Scholar 

  133. Corso S, Migliore C, Ghiso E, De Rosa G, Comoglio PM, Giordano S. Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene. 2008;27:684–93.

    Article  CAS  PubMed  Google Scholar 

  134. Eder JP, Vande Woude GF, Boerner SA, LoRusso PM. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res. 2009;15:2207–14.

    Article  CAS  PubMed  Google Scholar 

  135. Jin H, Yang R, Zheng Z, et al. MetMAb, the one-armed 5D5 anti-c-Met antibody, inhibits orthotopic pancreatic tumor growth and improves survival. Cancer Res. 2008;68:4360–8.

    Article  CAS  PubMed  Google Scholar 

  136. NCT01418222 and Genentech. Randomized, double-blind, phase II study of FOLFOX/Bevacizumab with onartuzumab (MetMAb) versus placebo as first-line treatment for patients with metastatic colorectal cancer. 2011–2016; From http://clinicaltrials.gov/show/NCT01418222.

  137. Bendell JC, Ervin TJ, Gallinson D, et al. Treatment rationale and study design for a randomized, double-blind, placebo-controlled phase II study evaluating onartuzumab (MetMAb) in combination with bevacizumab plus mFOLFOX-6 in patients with previously untreated metastatic colorectal cancer. Clin Colorectal Cancer. 2013;12:218–22.

    Google Scholar 

  138. Martens T, Schmidt NO, Eckerich C, et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res. 2006;12:6144–52.

    Article  CAS  PubMed  Google Scholar 

  139. Vigna E, Pacchiana G, Mazzone M, et al. Active cancer immunotherapy by anti-Met antibody gene transfer. Cancer Res. 2008;68:9176–83.

    Article  CAS  PubMed  Google Scholar 

  140. Gordon MS, Sweeney CS, Mendelson DS, et al. Safety, pharmacokinetics, and pharmacodynamics of AMG 102, a fully human hepatocyte growth factor-neutralizing monoclonal antibody, in a first-in-human study of patients with advanced solid tumors. Clin Cancer Res. 2010;16:699–710.

    Article  CAS  PubMed  Google Scholar 

  141. Wen PY, Schiff D, Cloughesy TF, et al. A phase II study evaluating the efficacy and safety of AMG102 (rilotumumab) in patients with recurrent glioblastoma. Neuro Oncol. 2011;13:437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Munshi N, Jeay S, Li Y, et al. ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther. 2010;9:1544–53.

    Article  CAS  PubMed  Google Scholar 

  143. Eathiraj S, Palma R, Volckova E, et al. Discovery of a novel mode of protein kinase inhibition characterized by the mechanism of inhibition of human mesenchymal-epithelial transition factor (c-Met) protein autophosphorylation by ARQ 197. J Biol Chem. 2011;286:20666–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schiller JH, Akerley WL, Brugge W, et al. Results from ARQ 197-209: a global randomized placebo-controlled phase II clinical trial of erlotinib plus ARQ 197 versus erlotinib plus placebo in previously treated EGFR inhibitor-naive patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). J Clin Oncol. 2010;28(18s), LBA7502.

    Google Scholar 

  145. NCT01611857. A Phase I/II Trial of the c-Met inhibitor, tivantinib, in combination with FOLFOX for the treatment of patients with advanced solid tumors (phase I) and previously untreated metastatic adenocarcinoma of the distal esophagus, gastroesophageal (GE) junction, or stomach (phase II). 2012: From http://clinicaltrials.gov/ct2/show/NCT01611857.

  146. Basilico C, Pennacchietti S, Vigna E, et al. Tivantinib (ARQ197) displays cytotoxic activity that is independent of its ability to bind MET. Clin Cancer Res. 2013;19:2381–92.

    Article  CAS  PubMed  Google Scholar 

  147. Katayama R, Aoyama A, Yamori T, et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res. 2013;73:3087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. NCT00788957 and Amgen. Panitumumab combination study with AMG 102 or AMG 479 in Wild-type KRAS mCRC. 2008; From http://clinicaltrials.gov/ct2/show/NCT00788957.

  149. Bladt F, Faden B, Friese-Hamim M, et al. EMD 1214063 and EMD 1204831 constitute a new class of potent and highly selective c-Met inhibitors. Clin Cancer Res. 2013;19:2941–51.

    Article  CAS  PubMed  Google Scholar 

  150. Medova M, Pochon B, Streit B, et al. The novel ATP-competitive inhibitor of the MET hepatocyte growth factor receptor EMD1214063 displays inhibitory activity against selected MET-mutated variants. Mol Cancer Ther. 2013;12:2415–24.

    Article  CAS  PubMed  Google Scholar 

  151. Humbert M, Medova M, Aebersold DM, et al. Protective autophagy is involved in resistance towards MET inhibitors in human gastric adenocarcinoma cells. Biochem Biophys Res Commun. 2013;431:264–9.

    Article  CAS  PubMed  Google Scholar 

  152. Scorsone K, Zhang L, Woodfield SE, Hicks J, Zage PE. The novel kinase inhibitor EMD1214063 is effective against neuroblastoma. Investig New Drugs. 2014;32:815–24.

    Article  CAS  Google Scholar 

  153. Graham DK, Salzberg DB, Kurtzberg J, et al. Ectopic expression of the proto-oncogene mer in pediatric T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2006;12:2662–9.

    Article  CAS  PubMed  Google Scholar 

  154. Linger RMA, Keating AM, Earp HS, Graham DK. TAM receptor tyrosine kinases: Biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res. 2008;100:35–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Holland SJ, Pan A, Franci C, et al. R428, a selective small molecule inhibitor of AXL kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 2010;70:1544–54.

    Article  CAS  PubMed  Google Scholar 

  156. Wnuk-Lipinska K, Gausdal G, Sandal T, et al. Selective small molecule AXL inhibitor BGB324 overcomes acquired drug resistance in non-small cell lung carcinoma models. Clin Cancer Res. 2014;20:B30.

    Article  Google Scholar 

  157. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  158. Morgan B, Thomas AL, Drevs J, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol. 2003;21:3955–64.

    Article  CAS  PubMed  Google Scholar 

  159. Jost LM, Gschwind HP, Jalava T, et al. Metabolism and disposition of vatalanib (PTK787/ZK-222584) in cancer patients. Drug Metab Dispos. 2006;34:1817–28.

    Article  CAS  PubMed  Google Scholar 

  160. Wood JM, Bold G, Buchdunger E, et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 2000;60:2178–89.

    CAS  PubMed  Google Scholar 

  161. Nakamura K, Taguchi E, Miura T, et al. KRN951, a highly potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, has antitumor activities and affects functional vascular properties. Cancer Res. 2006;66:9134–42.

    Article  CAS  PubMed  Google Scholar 

  162. Mayer EL, Scheulen ME, Beckman J, et al. A Phase I dose-escalation study of the VEGFR inhibitor tivozanib hydrochloride with weekly paclitaxel in metastatic breast cancer. Breast Cancer Res Treat. 2013;140:331–9.

    Article  CAS  PubMed  Google Scholar 

  163. Eskens FA, de Jonge MJ, Bhargava P, et al. Biologic and clinical activity of tivozanib (AV-951, KRN-951), a selective inhibitor of VEGF receptor-1, -2, and -3 tyrosine kinases, in a 4-week-on, 2-week-off schedule in patients with advanced solid tumors. Clin Cancer Res. 2011;17:7156–63.

    Article  CAS  PubMed  Google Scholar 

  164. Batchelor TT, Duda DG, di Tomaso E, et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol. 2010;28:2817–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wick W, Wick A, Weiler M, Weller M. Patterns of progression in malignant glioma following anti‐VEGF therapy: perceptions and evidence. Curr Neurol Neurosci Rep. 2011;11:305–12.

    Article  CAS  PubMed  Google Scholar 

  166. Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan‐VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11:83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rahman R, Smith S, Rahman C, Grundy R. Antiangiogenic therapy and mechanisms of tumor resistance in malignant glioma. J Oncol. 2010;2010:251231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Winkler F, Kozin SV, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin‐ 1, and matrix metalloproteinases. Cancer Cell. 2004;6:553–63.

    CAS  PubMed  Google Scholar 

  169. Wedge SR, Kendrew J, Hennequin LF, et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 2005;65:4389–400.

    Google Scholar 

  170. Takeda M, Arao T, Yokote H, et al. AZD2171 shows potent antitumor activity against gastric cancer over-expressing fibroblast growth factor receptor 2/keratinocyte growth factor receptor. Clin Cancer Res. 2007;13:3051–7.

    Article  CAS  PubMed  Google Scholar 

  171. Siemann DW, Brazelle WD, Jurgensmeier JM. The vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor cediranib (Recentin; AZD2171) inhibits endothelial cell function and growth of human renal tumor xenografts. Int J Radiat Oncol Biol Phys. 2009;73:897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Medinger M, Esser N, Zirrgiebel U, Ryan A, Jurgensmeier JM, Drevs J. Antitumor and antiangiogenic activity of cediranib in a preclinical model of renal cell carcinoma. Anticancer Res. 2009;29:5065–76.

    CAS  PubMed  Google Scholar 

  173. Dietrich J, Wang D, Batchelor TT. Cediranib: profile of a novel antiangiogenic agent in patients with glioblastoma. Expert Opin Investig Drugs. 2009;18:1549–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Motzer RJ, Michaelson MD, Redman BG, et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24:16–24.

    Article  CAS  PubMed  Google Scholar 

  175. Motzer RJ, Rini BI, Bukowski RM, et al. Sunitinib in patients with metastatic renal cell carcinoma. JAMA. 2006;295:2516–24.

    Article  CAS  PubMed  Google Scholar 

  176. Motzer RJ, Hutson TE, Tomczak P, et al. Phase III ran domized trial of sunitinib malate (SU11248) versus interferon alfa (IFN-a) as first-line systemic therapy for patients with metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2006;24 (Suppl; late breaking abstract 3).

    Google Scholar 

  177. Casali PG, Garrett CR, Blackstein ME, et al. Updated results from a phase III trial of sunitinib in GIST patients (pts) for whom imatinib (IM) therapy has failed due to resistance or intolerance. J Clin Oncol. 2006; 24 (Suppl; abstr 9513).

    Google Scholar 

  178. Demetri G, van Oosterom AT, Garrett C, et al. Improved survival and sustained clinical benefit with SU11248 (SU) in pts with GIST after failure of imatinib mesylate (IM) therapy in a phase III trial. 2006 Gastrointestinal Cancers Symposium 2006; Abstract No: 8.

    Google Scholar 

  179. George S, Casali PG, Blay J, et al. Phase II study of sunitinib administered in a continuous daily dosing regimen in patients (pts) with advanced GIST. J Clin Oncol. 2006;24 (Suppl; abstr 9532) 87.

    Google Scholar 

  180. Socinski MA, Novello S, Sanchez JM, et al. Efficacy and safety of sunitinib in previously treated, advanced non-small cell lung cancer (NSCLC): preliminary results of a multicenter phase II trial. J Clin Oncol. 2006;24 (Suppl; abstr 241):88.

    Google Scholar 

  181. Kulke M, Lenz HJ, Meropol NJ, et al. A phase 2 study to evaluate the efficacy and safety of SU11248 in patients (pts) with unresectable neuroendocrine tumors (NETs). J Clin Oncol. 2005;23 (Suppl; abstr 4008).

    Google Scholar 

  182. Sridhar SS, Hedley D, Siu LL. Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther. 2005;4:677–85.

    Article  CAS  PubMed  Google Scholar 

  183. Strumberg D, Richly H, Hilger RA, et al. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractoryn solid tumors. J Clin Oncol. 2005;23:965–72.

    Article  CAS  PubMed  Google Scholar 

  184. Ratain MJ, Eisen T, Stadler WM, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24:2505–12.

    Article  CAS  PubMed  Google Scholar 

  185. Ratain MJ, Eisen T, Stadler WM, et al. Final findings from a Phase II, placebo-controlled, randomized discontinuation trial (RDT) of sorafenib (BAY 43-9006) in patients with advanced renal cell carcinoma (RCC). J Clin Oncol. 2005;23 (Suppl; abstr 4544).

    Google Scholar 

  186. Escudier B, Szczylic C, Eisen T, et al. Randomized Phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43-9006) in patients with advanced renal cell carcinoma (RCC). J Clin Oncol. 2005;23 (Suppl; late breaking abstract 4510).

    Google Scholar 

  187. Eisen T, Bukowski RM, Staehler M, et al. Randomized phase III trial of sorafenib in advanced renal cell carcinoma (RCC): impact of crossover on survival. J Clin Oncol. 2006;24 (Suppl; abstr 4524).

    Google Scholar 

  188. Perez-Soler R. Can rash associated with HER1/EGFR inhi bition be used as a marker of treatment outcome? Oncology (Williston Park). 2003;17:23–8.

    Google Scholar 

  189. Strumberg D, Awada A, Hirte H, et al. Pooled safety analysis of BAY 43-9006 (sorafenib) monotherapy in patients with advanced solid tumours: Is rash associated with treatment outcome? Eur J Cancer. 2006;42:548–56.

    Article  CAS  PubMed  Google Scholar 

  190. Wilhelm SM, Dumas J, Adnane L, et al. Regorafenib (BAY 73–4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129:245–55.

    Article  CAS  PubMed  Google Scholar 

  191. Grothey A, Van Cutsem E, Sobrero A, et al. CORRECT Study Group. Regorafenib monotherapy for previously treated metastatic colorectal cancer: an international, multicentre, prospective, randomised, placebo controlled phase 3 trial (CORRECT). Lancet. 2013;381:303–12.

    Article  CAS  PubMed  Google Scholar 

  192. Schmieder R, Hoffmann J, Becker M, et al. Regorafenib (BAY 73-4506): antitumor and antimetastatic activities in preclinical models of colorectal cancer). Intern J Cancer. 2014;135:1487–96.

    Article  CAS  Google Scholar 

  193. Tang R, Kain T, Herman J, Seer T. Durable response using regorafenib in an elderly patient with metastatic colorectal cancer: case report. Cancer Manag Res. 2015;7:357–60.

    PubMed  PubMed Central  Google Scholar 

  194. Parikh SS, Mehta HH, Desai BI. Advances in development of bevacizumab, a humanized antiangiogenic therapeutic monoclonal antibody targeting VEGF in cancer cells. Int J Pharm Biomed Sci. 2012;3:155–63.

    Google Scholar 

  195. Tabrizi M, Roskos LK. xposure–response relationships for therapeutic biologic products. In: Meibohm B, editor. Pharmacokinetics and pharmacodynamics of biotech drugs. Principles and case studies in drug development. Weinheim: Wiley-VCH; 2006. p. 295–327.

    Google Scholar 

  196. Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 2005;65:671–80.

    CAS  PubMed  Google Scholar 

  197. Schutz FA, Je Y, Azzi GR, Nguyen PL, Choueiri TK. Bevacizumab increases the risk of arterial ischemia: a large study in cancer patients with a focus on different subgroup outcomes. Ann Oncol. 2011;22:1404–12.

    Article  CAS  PubMed  Google Scholar 

  198. Economopoulou E, Kotsakis A, Kapiris I, Kentepozidis N. Cancer therapy and cardiovascular risk: focus on bevacizumab. Cancer Manag Res. 2015;15:133–43.

    Article  CAS  Google Scholar 

  199. Mirone G, Shukla A, Marfe G. Signaling mechanisms of resistance to EGFR- and Anti-Angiogenic Inhibitors cancer. Crit Rev Oncol Hematol. 2016;97:85–95.

    Article  PubMed  Google Scholar 

  200. Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A. 2002;99:11393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3:391–400.

    Article  CAS  PubMed  Google Scholar 

  202. Kim ES, Serur A, Huang J, Manley CA, et al. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci U S A. 2002;99:11399–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Rudge JS, Holash J, Hylton D. Inaugural article: VEGF trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc Natl Acad Sci U S A. 2007;104:18363–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gomez-Manzano C, Holash J, Fueyo J. VEGF Trap induces antiglioma effect at different stages of disease. Neuro Oncol. 2008;10:940–5.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Van Cutsem E, Tabernero J, Lakomy R, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin based regimen. J Clin Oncol. 2012;30:3499–506.

    Article  PubMed  CAS  Google Scholar 

  206. Yasuda H, Kobayashi S, Costa DB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: Preclinical data and clinical implications. Lancet Oncol. 2012;13:e23–31.

    Article  CAS  PubMed  Google Scholar 

  207. Wu JY, Wu SG, Yang CH, et al. Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response. Clin Cancer Res. 2008;14:4877–82.

    Article  CAS  PubMed  Google Scholar 

  208. Greulich H, Chen TH, Feng W, et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med. 2005;2, e313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Inukai M, Toyooka S, Ito S, et al. Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res. 2006;66:7854–8.

    Article  CAS  PubMed  Google Scholar 

  210. Tokumo M, Toyooka S, Ichihara S, et al. Double mutation and gene copy number of EGFR in gefitinib refractory non-small-cell lung cancer. Lung Cancer. 2006;53:117–21.

    Article  PubMed  Google Scholar 

  211. Sequist LV, Martins RG, Spigel D, et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol. 2008;26:2442–9.

    Article  CAS  PubMed  Google Scholar 

  212. Turke AB, Zejnullahu K, Wu YL, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell. 2010;17:77–88.

    Google Scholar 

  213. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.

    Article  CAS  PubMed  Google Scholar 

  214. Solomon B, Varella-Garcia M, Camidge DR. ALK gene rearrangements. A new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol. 2009;4:1450–4

    Google Scholar 

  215. Selinger CI, Rogers TM, Russell PA, et al. Testing for ALK rearrangement in lung adeno- carcinoma-a multicenter comparison of immunohistochemistry and fluorescent in situ hybridization. Mod Pathol. 2013;26:1545–53.

    Article  CAS  PubMed  Google Scholar 

  216. Koivunen JP, Mermel C, Zejnullahu K, et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res. 2008;14:4275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Choi YL, Takeuchi K, Soda M, et al. Identification of novel isoform of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008;68:4971–6.

    Article  CAS  PubMed  Google Scholar 

  218. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  CAS  PubMed  Google Scholar 

  219. Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. 2013;8:823–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Méndez M, Custodio A, Provencio M. New molecular targeted therapies for advanced non-small-cell lung cancer. J Thorac Dis. 2011;3:30–56.

    PubMed  PubMed Central  Google Scholar 

  221. Gainor JF, Shaw AT. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J Clin Oncol. 2013;31:3987–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Costa DB, Halmos B, Kumar A, et al. BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med. 2007;4:1669–79. discussion 1680.

    Article  CAS  PubMed  Google Scholar 

  223. Cragg MS, Kuroda J, Puthalakath H, et al. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med. 2007;4:1681–9. discussion 1690.

    Article  CAS  PubMed  Google Scholar 

  224. Gong Y, Somwar R, Politi K, et al. Induction of BIM is essential for apoptosis triggered by EGFR kinase inhibitors in mutant EGFR-dependent lung adenocarcinomas. PLoS Med. 2007;4, e294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Faber AC, Corcoran RB, Ebi H, et al. BIM expression in treatment-naive cancers predicts responsiveness to kinase inhibitors. Cancer Discov. 2011;1:352–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ng KP, Hillmer AM, Chuah CT, et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med. 2012;18:521–8.

    Article  CAS  PubMed  Google Scholar 

  227. Ercan D, Zejnullahu K, Yonesaka K, et al. Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene. 2010;29:2346–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Borras E, Jurado I, Hernan I, et al. Clinical pharmacogenomic testing of KRAS, BRAF and EGFR mutations by high resolution melting analysis and ultra-deep pyrosequencing. BMC Cancer. 2011;11:406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Provencio M, Garcia-Campelo R, Isla D, de Castro J. Clinical molecular factors predicting response and survival for tyrosine-kinase inhibitors. Clin Transl Oncol. 2009;11:428–36.

    Article  CAS  PubMed  Google Scholar 

  230. Rosell R, Ichinose Y, Taron M, et al. Mutations in the tyrosine kinase domain of the EGFR gene associated with gefitinib response in non-small-cell lung cancer. Lung Cancer. 2005;50:25–33.

    Article  PubMed  Google Scholar 

  231. Rosell R, Moran T, Cardenal F, et al. Predictive biomarkers in the management of EGFR mutant lung cancer. Ann N Y Acad Sci. 2010;1210:45–52.

    Google Scholar 

  232. Yun CH, Mengwasser KE, Toms AV, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A. 2008;105:2070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Doebele RC, Pilling AB, Aisner DL, et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012;18:1472–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Lovly CM, Pao W. Escaping ALK inhibition: mechanisms of and strategies to overcome resistance. Sci Transl Med. 2012;4:120.

    Google Scholar 

  235. Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3:75ra26.

    Google Scholar 

  236. Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4:120ra17.

    Google Scholar 

  237. Katayama R, Khan TM, Benes C, et al. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A. 2011;108:7535–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Guix M, Faber AC, Wang SE, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest. 2008;118:2609–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Yano S, Wang W, Li Q, et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res. 2008;68:9479–87.

    Article  CAS  PubMed  Google Scholar 

  240. Christensen JG, Schreck R, Burrows J, et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res. 2003;63:7345–55.

    CAS  PubMed  Google Scholar 

  241. Miller CT, Lin L, Casper AM, et al. Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma. Oncogene. 2006;25:409–18.

    CAS  PubMed  Google Scholar 

  242. Smolen GA, Sordella R, Muir B, et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A. 2006;103:2316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Takezawa K, Pirazzoli V, Arcila ME, et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov. 2012;2:922–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ohashi K, Sequist LV, Arcila ME, et al. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci U S A. 2012;109:E2127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Engelman JA, Mukohara T, Zejnullahu K, et al. Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J Clin Invest. 2006;116:2695–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Sasaki T, Koivunen J, Ogino A, et al. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 2011;71:6051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Arcila ME, Oxnard GR, Nafa K, et al. Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res. 2011;17:1169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Zakowski MF, Ladanyi KMG. EGFR mutations in small-cell lung cancers in patients who have never smoked. N Engl J Med. 2006;355:213–5.

    Article  CAS  PubMed  Google Scholar 

  249. Gong Y, Yao E, Shen R, et al. High expression levels of total IGF-1R and sensitivity of NSCLC cells in vitro to an anti-IGF-1R antibody (R1507). PLoS One. 2009;4, e7273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Sharma SV, Lee DY, Li B, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141:69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Yu HA, Arcila ME, Rekhtman N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19:2240–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Chaft JE, Oxnard GR, Sima CS, Miller VA, Riely GJ. Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib: Implications for clinical trial design. Clin Cancer Res. 2011;17:6298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Pop O, Pirvu A, Toffart AC, Moro-Sibilot D. Disease flare after treatment discontinuation in a patient with EML4-ALK lung cancer and acquired resistance to crizotinib. J Thorac Oncol. 2012;7:e1–2.

    Article  PubMed  Google Scholar 

  254. Overman MJ, Modak J, Kopetz S, et al. Use of research biopsies in clinical trials: Are risks and benefits adequately discussed? J Clin Oncol. 2013;31:17–22.

    Article  PubMed  Google Scholar 

  255. Peppercorn J. Toward improved understanding of the ethical and clinical issues surrounding mandatory research biopsies. J Clin Oncol. 2013;31:1–2.

    Article  PubMed  Google Scholar 

  256. Kuang Y, Rogers A, Yeap BY, et al. Noninvasive detection of EGFR T790M in gefitinib or erlotinib resistant non-small cell lung cancer. Clin Cancer Res. 2009;15:2630–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Hohenberger P, Ronellenfitsch U, Oladeji O, et al. Pattern of recurrence in patients with ruptured primary gastrointestinal stromal tumour. Br J Surg. 2010;97:1854–9.

    Article  CAS  PubMed  Google Scholar 

  258. Dematteo RP, Heinrich MC, El-Rifai WM, Demetri G. Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum Pathol. 2002;33:466–77.

    Article  CAS  PubMed  Google Scholar 

  259. Plaat BE, Hollema H, Molenaar WM, et al. Soft tissue leiomyosarcomas and malignant gastrointestinal stromal tumors: differences in clinical outcome and expression of multidrug resistance proteins. J Clin Oncol. 2000;18:3211–20.

    CAS  PubMed  Google Scholar 

  260. Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279:577–80.

    Article  CAS  PubMed  Google Scholar 

  261. Buchdunger E, Cioffi CL, Law N, et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther. 2000;295:139–45.

    CAS  PubMed  Google Scholar 

  262. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood. 2000;96:925–32.

    CAS  PubMed  Google Scholar 

  263. Heinrich MC, Wait CL, Yee KWH, Griffith DJ. STI571 inhibits the kinase activity of wild type and juxtamembrane c-kit mutants but not the exon 17 D816V mutation associated with mastocytosis. Blood. 2000;96:173b.

    Google Scholar 

  264. Tuveson DA, Willis NA, Jacks T, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene. 2001;20:5054–8.

    Article  CAS  PubMed  Google Scholar 

  265. Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med. 2001;344:1052–6.

    Article  CAS  PubMed  Google Scholar 

  266. van Oosterom AT, Judson IR, Verweij J, et al. Update of phase I study of imatinib (STI571) in advanced soft tissue sarcomas and gastrointestinal stromal tumors: a report of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer. 2002;38 Suppl 5:S83–7.

    Article  PubMed  Google Scholar 

  267. Van den Abbeele AD, Badawi RD. Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTs). Eur J Cancer. 2002;38 Suppl 5:S60–5.

    Article  PubMed  Google Scholar 

  268. Bauer S, Yu LK, Demetri GD, Fletcher JA. Heat shock protein 90 inhibition in imatinib-resistant gastrointestinal stromal tumor. Cancer Res. 2006;66:9153–961.

    Article  CAS  PubMed  Google Scholar 

  269. Gordon PM, Fisher DE. Role for the proapoptotic factor BIM in mediating imatinib-induced apoptosis in a c-KIT-dependent gastrointestinal stromal tumor cell line. J Biol Chem. 2010;285:14109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Liu Y, Tseng M, Perdreau SA, et al. Histone H2AX is a mediator of gastrointestinal stromal tumor cell apoptosis following treatment with imatinib mesylate. Cancer Res. 2007;67:2685–92.

    Article  CAS  PubMed  Google Scholar 

  271. Balachandran VP, Cavnar MJ, Zeng S, et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med. 2011;17:1094–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Le Cesne A, Ray-Coquard I, Bui BN, et al. Discontinuation of imatinib in patients with advanced gastrointestinal stromal tumours after 3 years of treatment: an open-label multicentre randomised phase 3 trial. Lancet Oncol. 2010;11:942–9.

    Article  PubMed  CAS  Google Scholar 

  273. Agaram NP, Besmer P, Wong GC, et al. Pathologic and molecular heterogeneity in imatinib-stable or imatinib-responsive gastrointestinal stromal tumors. Clin Cancer Res. 2007;13:170–81.

    Article  CAS  PubMed  Google Scholar 

  274. Liu Y, Perdreau SA, Chatterjee P, Wang L, Kuan SF, Duensing A. Imatinib mesylate induces quiescence in gastrointestinal stromal tumor cells through the CDH1-SKP2-p27Kip1 signaling axis. Cancer Res. 2008;68:9015–23.

    Article  CAS  PubMed  Google Scholar 

  275. Gupta A, Roy S, Lazar AJ, et al. Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc Natl Acad Sci U S A. 2010;107:14333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Abhyankar SA, Nair N. Highlighting the role of FDG PET scan in early response assessment of gastrointestinal stromal tumor treated with imatinib mesylate. Clin Nucl Med. 2008;33:213–4.

    Article  PubMed  Google Scholar 

  277. Choi H, Charnsangavej C, Faria SC, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007;25:1753–9.

    Article  PubMed  Google Scholar 

  278. Blanke CD, Demetri GD, von Mehren M, et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol. 2008;26:620–5.

    Article  CAS  PubMed  Google Scholar 

  279. Blanke CD, Rankin C, Demetri GD, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26:626–32.

    Article  CAS  PubMed  Google Scholar 

  280. Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004;364:1127–34.

    Article  CAS  PubMed  Google Scholar 

  281. Debiec-Rychter M, Sciot R, Le Cesne A, et al. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer. 2006;42:1093–103.

    Article  CAS  PubMed  Google Scholar 

  282. Debiec-Rychter M, Wasag B, Stul M, et al. Gastrointestinal stromal tumours (GISTs) negative for KIT (CD117 antigen) immunoreactivity. J Pathol. 2004;202:430–8.

    Article  CAS  PubMed  Google Scholar 

  283. Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2003;21:4342–9.

    Article  CAS  PubMed  Google Scholar 

  284. Heinrich MC, Owzar K, Corless CL, et al. Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. J Clin Oncol. 2008;26:5360–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Heinrich MC, Maki RG, Corless CL, et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol. 2008;26:5352–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. MetaGIST. Comparison of two doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors: a meta-analysis of 1,640 patients. J Clin Oncol. 2010;28:1247–53.

    Google Scholar 

  287. Janeway KA, Albritton KH, Van Den Abbeele AD, et al. Sunitinib treatment in pediatric patients with advanced GIST following failure of imatinib. Pediatr Blood Cancer. 2009;52:767–71.

    Article  PubMed  Google Scholar 

  288. Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J. Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell. 2007;130:323–34.

    Article  CAS  PubMed  Google Scholar 

  289. Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11:865–78.

    CAS  PubMed  Google Scholar 

  290. Corless CL, Schroeder A, Griffith D, et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol. 2005;23:5357–564.

    Article  CAS  PubMed  Google Scholar 

  291. Weisberg E, Wright RD, Jiang J, et al. Effects of PKC412, nilotinib, and imatinib against GIST-associated PDGFRA mutants with differential imatinib sensitivity. Gastroenterology. 2006;131:1734–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Gajiwala KS, Wu JC, Christensen J, et al. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc Natl Acad Sci U S A. 2009;106:1542–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Biron P, Cassier PA, Fumagalli E, et al. Grp ESTBS. Outcome of patients (pts) with PDGFRA(D842V) mutant gastrointestinal stromal tumor (GIST) treated with imatinib (IM) for advanced disease. J Clin Oncol. 2010;28:15s (suppl; abstr 10051)

    Google Scholar 

  294. Debiec-Rychter M, Cools J, Dumez H, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology. 2005;128:270–9.

    Article  CAS  PubMed  Google Scholar 

  295. Liegl B, Kepten I, Le C, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216:64–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Miselli FC, Casieri P, Negri T, et al. c-Kit/PDGFRA gene status alterations possibly related to primary imatinib resistance in gastrointestinal stromal tumors. Clin Cancer Res. 2007;13:2369–77.

    Article  CAS  PubMed  Google Scholar 

  297. Antonescu CR, Viale A, Sarran L, et al. Gene expression in gastrointestinal stromal tumors is distinguished by KIT genotype and anatomic site. Clin Cancer Res. 2004;10:3282–90.

    Article  CAS  PubMed  Google Scholar 

  298. Grimpen F, Yip D, McArthur G, et al. Resistance to imatinib, low-grade FDG-avidity on PET, and acquired KIT exon 17 mutation in gastrointestinal stromal tumour. Lancet Oncol. 2005;6:724–7.

    Article  CAS  PubMed  Google Scholar 

  299. Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol. 2006;24:4764–74.

    Article  CAS  PubMed  Google Scholar 

  300. Wakai T, Kanda T, Hirota S, Ohashi A, Shirai Y, Hatakeyama K. Late resistance to imatinib therapy in a metastatic gastrointestinal stromal tumour is associated with a second KIT mutation. Br J Cancer. 2004;90:2059–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Loughrey MB, Waring PM, Dobrovic A, Demetri G, Kovalenko S, McArthur G. Polyclonal resistance in gastrointestinal stromal tumor treated with sequential kinase inhibitors. Clin Cancer Res. 2006;12(20 Pt 1):6205–6. author reply 6206-6207.

    Article  CAS  PubMed  Google Scholar 

  302. Wardelmann E, Merkelbach-Bruse S, Pauls K, et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res. 2006;12:1743–9.

    Article  CAS  PubMed  Google Scholar 

  303. Mahadevan D, Cooke L, Riley C, et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene. 2007;26:3909–19.

    Article  CAS  PubMed  Google Scholar 

  304. Takahashi T, Serada S, Ako M, et al. New findings of kinase switching in gastrointestinal stromal tumor under imatinib using phosphoproteomic analysis. Int J Cancer. 2013;133:2737–43.

    CAS  PubMed  Google Scholar 

  305. Sakurama K, Noma K, Takaoka M, et al. Inhibition of focal adhesion kinase as a potential therapeutic strategy for imatinib-resistant gastrointestinal stromal tumor. Mol Cancer Ther. 2009;8:127–34.

    Article  CAS  PubMed  Google Scholar 

  306. Bos JL, Fearon ER, Hamilton SR, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature. 1987;327:293–7.

    Article  CAS  PubMed  Google Scholar 

  307. Mascaux C, Iannino CN, Martin B, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92:131–9.

    Article  CAS  PubMed  Google Scholar 

  308. Linardou H, Dahabreh IJ, Kanaloupiti D, et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 2008;9:962–72.

    Article  CAS  PubMed  Google Scholar 

  309. Lievre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.

    Article  CAS  PubMed  Google Scholar 

  310. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res. 2007;67:2643–8.

    Article  CAS  PubMed  Google Scholar 

  311. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.

    Article  CAS  PubMed  Google Scholar 

  312. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359:1757–65.

    Article  CAS  PubMed  Google Scholar 

  313. Edkins S, O’Meara S, Parker A, et al. Recurrent KRAS codon 146 mutations in human colorectal cancer. Cancer Biol Ther. 2006;5:928–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Janakiraman M, Vakiani E, Zeng Z, et al. Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res. 2010;70:5901–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Smith G, Bounds R, Wolf H, Steele RJ, Carey FA, Wolf CR. Activating K-Ras mutations out with ‘hotspot’ codons in sporadic colorectal tumours – implications for personalised cancer medicine. Br J Cancer. 2010;102:693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Vaughn CP, Zobell SD, Furtado LV, Baker CL, Samowitz WS. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer. 2011;50:307–12.

    Article  CAS  PubMed  Google Scholar 

  317. Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369:1023–34.

    Article  CAS  PubMed  Google Scholar 

  318. Schwartzberg LS, Rivera F, Karthaus M, et al. PEAK: a randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J Clin Oncol. 2014;32:2240–7.

    Article  CAS  PubMed  Google Scholar 

  319. Heinemann V, von Weikersthal LF, Decker T, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1065–75.

    Article  CAS  PubMed  Google Scholar 

  320. Rosenberg DW, Yang S, Pleau DC, et al. Mutations in BRAF and KRAS differentially distinguish serrated versus non-serrated hyperplastic aberrant crypt foci in humans. Cancer Res. 2007;67:3551–4.

    Article  CAS  PubMed  Google Scholar 

  321. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch repair status. Nature. 2002;418:934.

    Article  CAS  PubMed  Google Scholar 

  322. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–95.

    Article  CAS  PubMed  Google Scholar 

  323. Di Nicolantonio F, Martini M, Molinari F, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26:5705–12.

    Article  PubMed  CAS  Google Scholar 

  324. Jhawer M, Goel S, Wilson AJ, et al. PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res. 2008;68:1953–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Bertotti A, Migliardi G, Galimi F, et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 2011;1:508–23.

    Article  CAS  PubMed  Google Scholar 

  326. Valtorta E, Misale S, Sartore-Bianchi A, et al. KRAS gene amplification in colorectal cancer and impact on response to EGFR-targeted therapy. Int J Cancer. 2013;133:1259–65.

    Article  CAS  PubMed  Google Scholar 

  327. Mekenkamp LJ, Tol J, Dijkstra JR, et al. Beyond KRAS mutation status: influence of KRAS copy number status and microRNAs on clinical outcome to cetuximab in metastatic colorectal cancer patients. BMC Cancer. 2012;12:292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Mita H, Toyota M, Aoki F, et al. A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth. BMC Cancer. 2009;9:198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  329. Wagner PL, Perner S, Rickman DS, et al. In situ evidence of KRAS amplification and association with increased p21 levels in non-small cell lung carcinoma. Am J Clin Pathol. 2009;132:500–5.

    Article  CAS  PubMed  Google Scholar 

  330. Sasaki H, Hikosaka Y, Kawano O, Moriyama S, Yano M, Fujii Y. Evaluation of Kras gene mutation and copy number gain in non-small cell lung cancer. J Thorac Oncol. 2011;6:15–20.

    Article  PubMed  Google Scholar 

  331. Laurent-Puig P, Cayre A, Manceau G, et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol. 2009;27:5924–30.

    Article  CAS  PubMed  Google Scholar 

  332. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  CAS  Google Scholar 

  333. Cremolini C, Di Bartolomeo M, Amatu A, et al. BRAF codons 594 and 596 mutations identify a new molecular subtype of metastatic colorectal cancer at favorable prognosis. Ann Oncol. 2015;26:2092–7.

    Article  CAS  PubMed  Google Scholar 

  334. Yonesaka K, Zejnullahu K, Okamoto I, et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med. 2011;3:99ra86.

    Google Scholar 

  335. Bardelli A, Corso S, Bertotti A, et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 2013;3:658–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Samuels Y, Wang Z, Bardella A, et al. High frequency of mutations of the PIK3CA gene in human cancer. Apoptosis. 2004;9:667–76.

    Article  Google Scholar 

  337. Karakas B, Bachman KE, Park BH. Mutation of the PIK3CA oncogene in human cancers. Br J Cancer. 2006;94:455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Goel A, Arnold CN, Niedzwiecki D, et al. Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res. 2004;64:3014–21.

    Article  CAS  PubMed  Google Scholar 

  339. De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemo-therapy refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11:753–62.

    Article  PubMed  CAS  Google Scholar 

  340. Sartore-Bianchi A, Di Nicolantonio F, Nichelatti M, et al. Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer. PLoS One. 2009;4, e7287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  341. Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486:532–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  342. Hobor S, Van Emburgh BO, Crowley E, Misale S, Di Nicolantonio F, Bardelli A. TGF-α and amphiregulin paracrine network promotes resistance to EGFR blockade in colorectal cancer cells. Clin Cancer Res. 2014;20:6429–38.

    Article  CAS  PubMed  Google Scholar 

  343. Misale S, Di Nicolantonio F, Sartore-Bianchi A, Siena S, Bardelli A. Resistance to Anti-EGFR Therapy in Colorectal Cancer: From Heterogeneity to Convergent Evolution Cancer Discov. 2014;4:1269–80.

    CAS  PubMed  Google Scholar 

  344. Montagut C, Dalmases A, Bellosillo B, et al. Identification of a mutation in the extracellular domain of the Epidermal Growth Factor Receptor conferring cetuximab resistance in colorectal cancer. Nat Med. 2012;18:221–3.

    Article  CAS  PubMed  Google Scholar 

  345. Diaz Jr LA, Sausen M, Fisher GA, Velculescu VE. Insights into therapeutic resistance from whole-genome analyses of circulating tumor DNA. Oncotarget. 2013;4:1856–7.

    Article  PubMed  PubMed Central  Google Scholar 

  346. Mohan S, Heitzer E, Ulz P, et al. Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet. 2014;10, e1004271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  347. Diaz LA, Williams RT, Wu J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486:537–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  348. Misale S, Arena S, Lamba S, et al. Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer. Sci Transl Med. 2014;6:224ra26.

    Google Scholar 

  349. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.

    Google Scholar 

  350. Jones HE, Goddard L, Gee JM, et al. Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer. 2004;11:793–814.

    Article  CAS  PubMed  Google Scholar 

  351. Camirand A, Zakikhani M, Young F, Pollak M. Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells. Breast Cancer Res. 2005;7:R570–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  352. Desbois-Mouthon C, Baron A, Blivet-Van Eggelpoël MJ, et al. Insulin-like growth factor-1 receptor inhibition induces a resistance mechanism via the epidermal growth factor receptor/HER3/AKT signaling pathway: rational basis for cotargeting insulin like growth factor-1 receptor and epidermal growth factor receptor in hepatocellular carcinoma. Clin Cancer Res. 2009;15:5445–56.

    Article  CAS  PubMed  Google Scholar 

  353. Ruckhäberle E, Rody A, Engels K, et al. Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res. Treat. 2008;112:41–52.

    Google Scholar 

  354. Sukocheva O, Wang L, Verrier E, Vadas MA, Xia P. Restoring endocrine response in breast cancer cells by inhibition of the sphingosine kinase-1 signaling pathway. Endocrinology. 2000;150:4484–92.

    Article  CAS  Google Scholar 

  355. Rosa R, Marciano R, Malapelle U, et al. Sphingosine kinase 1 overexpression contributes to cetuximab resistance in human colorectal cancer models. Clin Cancer Res. 2013;19:138–47.

    Article  CAS  PubMed  Google Scholar 

  356. Gao Y, Gao F, Chen K, Tian ML, Zhao DL. Sphingosine kinase 1 and resistance. Drug Des Devel Ther. 2015;9:3239–45.

    Article  PubMed  PubMed Central  Google Scholar 

  357. Jia Y, Liu M, Huang W, et al. Recombinant human endostatin Endostar inhibits tumor growth and metastasis in a mouse xenograft model of colon cancer. Pathol Oncol Res. 2012;18:315–23.

    Article  CAS  PubMed  Google Scholar 

  358. Jitawatanarat P, Wee W. Update on antiangiogenic therapy in colorectal cancer: aflibercept and regorafenib. J Gastrointest Oncol. 2013;4:231–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  359. Edelman MJ, Mao L. Resistance to anti-angiogenic agents: a brief review of mechanisms and consequences. Transl Lung Cancer Res. 2013;2:304–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  360. Prager GW, Poettler M, Unseld M, Zielinski CC. Angiogenesis in cancer: Anti-VEGF escape mechanisms. Transl Lung Cancer Res. 2012;1:14–25.

    PubMed  PubMed Central  Google Scholar 

  361. Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist. 2015;20:660–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Shi YH, Bingle L, Gong LH, Wang YX, Corke KP, Fang WG. Basic FGF augments hypoxia-induced HIF-1-alpha expression and VEGF release in T47D breast cancer cells. Pathology. 2007;39:396–400.

    Article  CAS  PubMed  Google Scholar 

  363. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8:299–309.

    Article  CAS  PubMed  Google Scholar 

  364. Ayers M, Awad M, Malone D, et al. Association of K-ras status with efficacy end points from a phase 1/2 study of brivanib in combination with cetuximab in patients with advanced or metastatic colorectal cancer (CRC). American Society of Clinical Oncology Gastrointestinal Cancers (ASCO-GI) Symposium, San Francisco, 2009; Abstract no. 375.

    Google Scholar 

  365. Garrett CR, Siu LL, El-Khoueiry A, et al. Phase I dose escalation study to determine the safety, pharmacokinetics and pharmacodynamics of brivanib alaninate in combination with full dose cetuximab in patients with advanced gastrointestinal malignancies who have failed prior therapy. Br J Cancer. 2011;105:44–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Clinicaltrials.gov. Cetuximab with or without brivanib in treating patients with metastatic colorectal cancer. http://clinicaltrials.gov/ct2/. Accessed 30 Nov 2010.

  367. Shojaei F, Wu X, Malik AK, et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+ Gr1+ myeloid cells. Nat Biotechnol. 2007;25:911–20.

    Article  CAS  PubMed  Google Scholar 

  368. Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther. 2005;315:971–9.

    Article  CAS  PubMed  Google Scholar 

  369. Faivre S, Demetri G, Sargent W, Raymond E. Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov. 2007;6:734–45.

    Article  CAS  PubMed  Google Scholar 

  370. Shojaei F, Wu X, Qu X, et al. GCSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A. 2009;106:6742–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Mirone G, Perna S, Shukla A, Marfe G. Involvement of Notch-1 in resistance to regorafenib in colon cancer cells. J Cell Physiol. 2015;231:1097–105.

    Article  PubMed  CAS  Google Scholar 

  372. Huang D, Ding Y, Li Y, et al. Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma. Cancer Res. 2010;70:1053–62.

    Article  CAS  PubMed  Google Scholar 

  373. Adelaiye R, Ciamporcero E, Miles KM, et al. Sunitinib dose escalation overcomes transient resistance in clear cell renal cell carcinoma and is associated with epigenetic modifications. Mol Cancer Ther. 2015;14:513–22.

    Article  CAS  PubMed  Google Scholar 

  374. Gotink KJ, Verheul HMW. Anti-angiogenic tyrosine kinase inhibitors what is their mechanism of action? Angiogenesis. 2010;13:1–14.

    Article  CAS  PubMed  Google Scholar 

  375. Hammers HJ, Verheul HM, Salumbides B, et al. Reversible epithelial to mesenchymal transition and acquired resistance to sunitinib in patients with renal cell carcinoma evidence from a xenograft study. Mol Cancer Ther. 2010;9:1525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Behnsawy HM, Shigemura K, Meligy FY, et al. Possible role of sonic hedgehog and epithelial-mesenchymal transition in renal cell cancer progression. Korean J Urol. 2013;54:547–54.

    Article  PubMed  PubMed Central  Google Scholar 

  377. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.

    Article  CAS  PubMed  Google Scholar 

  378. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–6.

    Article  CAS  PubMed  Google Scholar 

  379. Cecconi O, Calorini L, Mannini A, Mugnai G, Ruggieri S. Enhancement of lungcolonizing potential of murine tumor cell lines co-cultivated with activated macrophages. Clin Exp Metastasis. 1997;15:94–101.

    Article  CAS  PubMed  Google Scholar 

  380. Oosterling SJ, van der Bij GJ, Meijer GA, et al. Macrophages direct tumour histology and clinical outcome in a colon cancer model. J Pathol. 2005;207:147–55.

    Article  PubMed  Google Scholar 

  381. Miselis NR, Wu ZJ, Van Rooijen N, Kane AB. Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma. Mol Cancer Ther. 2008;7:788–99.

    Article  CAS  PubMed  Google Scholar 

  382. Chen JJ, Yao PL, Yuan A, et al. Upregulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res. 2003;9:729–37.

    CAS  PubMed  Google Scholar 

  383. Sundar SS, Ganesan TS. Role of lymphangiogenesis in cancer. J Clin Oncol. 2007;25:4298–307.

    Article  CAS  PubMed  Google Scholar 

  384. Dannenmann SR, Thielicke J, Stöckli M, et al. Tumor-associated macrophages subvert T-cell function and correlate with reduced survival in clear cell renal cell carcinoma. Oncoimmunology. 2013;2, e23562.

    Article  PubMed  PubMed Central  Google Scholar 

  385. Huang D, Ding Y, Zhou M, et al. Interleukin-8 mediates resistance to antiangiogenic agent. Cancer Res. 2010;70:1063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Bielecka ZF, Czarnecka AM, Solarek W, Kornakiewicz A, Szczylik C. Mammalian target of rapamycin inhibitors resistance mechanisms in clear cell renal cell carcinoma. Curr Signal Transduct Ther. 2014;8:218–28.

    Article  PubMed  CAS  Google Scholar 

  387. Armulik A, Genové G, Betsholtz C. Pericytes developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215.

    Article  CAS  PubMed  Google Scholar 

  388. Hall AP. Review of the pericyte during angiogenesis and its role in cancer and diabetic retinopathy. Toxicol Pathol. 2006;34:763–75.

    Article  CAS  PubMed  Google Scholar 

  389. Cao Z, Shang B, Zhang G, et al. Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis. Biochim Biophys Acta. 1836;2013:273–86.

    Google Scholar 

  390. Gotink KJ, Broxterman HJ, Labots M, et al. Lysosomal sequestration of sunitinib a novel mechanism of drug resistance. Clin Cancer Res. 2011;17:7337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Kassouf W, Dinney CP, Brown G, et al. Uncoupling between epidermal growth factor receptor and downstream signals defines resistance to the antiproliferative effect of Gefitinib in bladder cancer cells. Cancer Res. 2005;65:10524–35.

    Article  CAS  PubMed  Google Scholar 

  392. Shrader M, Pino MS, Brown G, et al. Molecular correlates of gefitinib responsiveness in human bladder cancer cells. Mol Cancer Ther. 2007;6:277–85.

    Article  CAS  PubMed  Google Scholar 

  393. Black PC, Brown GA, Inamoto T, et al. Sensitivity to epidermal growth factor receptor inhibitor requires E-cadherin expression in urothelial carcinoma cells. Clin Cancer Res. 2008;14:1478–86.

    Article  CAS  PubMed  Google Scholar 

  394. Li J, Lin B, Li X, Tang X, He Z, Zhou K. Biomarkers for predicting response to tyrosine kinase inhibitors in drug-sensitive and drug-resistant human bladder cancer cells. Oncol Rep. 2015;33:951–7.

    PubMed  Google Scholar 

  395. Knievel J, Schulz WA, Greife A, et al. Multiple mechanisms mediate resistance to sorafenib in urothelial cancer. Int J Mol Sci. 2014;15:20500–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Cox AD, Der CJ. The RAF inhibitor paradox: unexpected consequences of targeted drugs. Cancer Cell. 2010;17:221–3.

    Article  CAS  PubMed  Google Scholar 

  397. Pinto-Leite R, Carreira I, Melo J, et al. Genomic characterization of three urinary bladder cancer cell lines: understanding genomic types of urinary bladder cancer. Tumour Biol. 2014;35:4599–617.

    Article  CAS  PubMed  Google Scholar 

  398. Rose A, Grandoch M, vom Dorp F, et al. Stimulatory effects of the multi-kinase inhibitor sorafenib on human bladder cancer cells. Br J Pharmacol. 2010;160:1690–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Sturm OE, Orton R, Grindlay J, et al. The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Sci Signal. 2010;3:ra90.

    Google Scholar 

  400. Nawroth R, Stellwagen F, Schulz WA, et al. S6K1 and 4E-BP1 are independent regulated and control cellular growth in bladder cancer. PLoS One. 2011;6, e27509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Ewald F, Ueffing N, Brockmann L, et al. The role of c-FLIP splice variants in urothelial tumours. Cell Death Dis. 2011;2, e245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. Di Lorenzo G, Tortora G, D’Armiento FP, et al. Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res. 2002;8:3438–44.

    PubMed  Google Scholar 

  403. Traish AM, Morgentaler A. Epidermal growth factor receptor expression escapes androgen regulation in prostate cancer: a potential molecular switch for tumour growth. Br J Cancer. 2009;101:1949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468:973–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Schulze A, Nicke B, Warne PH, Tomlinson S, Downward J. The transcriptional response to Raf activation is almost completely dependent on Mitogen-activated Protein Kinase Kinase activity and shows a major autocrine component. Mol Biol Cell. 2005;15:3450–63.

    Article  Google Scholar 

  406. Festuccia C, Gravina GL, Millimaggi D, et al. Uncoupling of the epidermal growth factor receptor from downstream signal transduction molecules guides the acquired resistance to gefitinib in prostate cancer cells. Oncol Rep. 2007;18:503–11.

    CAS  PubMed  Google Scholar 

  407. Culig Z, Bartsch G, Hobisch A. Interleukin-6 regulates androgen receptor activity and prostate cancer cell growth. Mol Cell Endocrinol. 2002;197:231–8.

    Article  CAS  PubMed  Google Scholar 

  408. Chen T, Wang LH, Farrar WL. Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res. 2000;60:2132–5.

    CAS  PubMed  Google Scholar 

  409. Michalaki V, Syrigos K, Charles P, Waxman J. Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 2004;90:2312–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  410. Kutikov A, Makhov P, Golovine K, et al. Interleukin-6: a potential biomarker of resistance to multitargeted receptor tyrosin kinase inhibitors in castration-resistant prostate cancer. Urology. 2011;78:968.e7–11.

    Google Scholar 

  411. Siu MK, Abou-Kheir W, Yin JJ, et al. Loss of EGFR signaling regulated miR-203 promotes prostate cancer bon metastasis and tyrosine kinase inhibitors resistance. Oncotarget. 2014;5:3770–84.

    Article  PubMed  PubMed Central  Google Scholar 

  412. Antonarakis ES, Carducci MA. Targeting angiogenesis for the treatment of prostate cancer. Expert Opin Ther Targets. 2012;16:365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Blanc J, Geney R, Menet C. Type II kinase inhibitors: an opportunity in cancer for rational design. Anticancer Agents Med Chem. 2013;13:731–47.

    Article  CAS  PubMed  Google Scholar 

  414. Bussolati B, Grange C, Camussi G. Tumor exploits alternative strategies to achieve vascularization. FASEB J. 2001;25:2874–82.

    Article  CAS  Google Scholar 

  415. Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, St Croix B. Genes that distinguish physiological and pathological angiogenesis. Cancer Cell. 2007;11:539–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Hida K, Hida Y, Amin DN, et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 2004;64:8249–55.

    Article  CAS  PubMed  Google Scholar 

  417. Bussolati B, Deambrosis I, Russo S, Deregibus MC, Camussi G. Altered angiogenesis and survival in human tumor-derived endothelial cells. FASEB J. 2003;17:1159–61.

    CAS  PubMed  Google Scholar 

  418. Xiong YQ, Sun HC, Zhang W, et al. Human hepatocellular carcinoma tumor-derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells. Clin Cancer Res. 2009;15:4838–46.

    Article  CAS  PubMed  Google Scholar 

  419. Fiorio Pla A, Brossa A, Bernardini M, et al. Differential sensitivity of prostate tumor derived endothelial cells to sorafenib and sunitinib. BMC Cancer. 2014;14:939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  420. Sahin O, Wang Q, Brady SW, et al. Biomarker-guided sequential targeted therapies to overcome therapy resistance in rapidly evolving highly aggressive mammary tumors. Cell Res. 2014;24:542–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  421. Tinoco G, Warsch S, Glück S, Avancha K, Montero AJ. Treating breast cancer in the 21st century: emerging biological therapies. J Cancer. 2013;4:117–32.

    Article  PubMed  PubMed Central  Google Scholar 

  422. Valabrega G, Montemurro F, Aglietta M. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol. 2007;18:977–84.

    Article  CAS  PubMed  Google Scholar 

  423. Hudis CA. Trastuzumab-mechanism of action and use in clinical practice. N Engl J Med. 2007;357:39–51.

    Article  CAS  PubMed  Google Scholar 

  424. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2012;9:16–32.

    Article  CAS  Google Scholar 

  425. Reynolds K, Sarangi S, Bardia A, Dizon DS. Precision medicine and personalized breast cancer: combination pertuzumab therapy. Pharmgenomics Pers Med. 2014;7:95–105.

    Google Scholar 

  426. Pallis AG, Syrigos KN. Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of NSCLC. Lung Cancer. 2013;80:120–30.

    Article  CAS  PubMed  Google Scholar 

  427. Moore MJ, Goldstein D, Hamm J, National Cancer Institute of Canada Clinical Trials Group, et al. Erlotinib Plus Gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials. Group J Clin Oncol. 2007;25:1960–6.

    Article  CAS  PubMed  Google Scholar 

  428. Wilson TR, Fridlyand J, Yan Y, et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 2012;487:505–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Gallardo A, Lerma E, Escuin D, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer. 2012;106:1367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Wang L, Zhang Q, Zhang J, et al. PI3K pathway activation results in low efficacy of both trastuzumab and lapatinib. BMC Cancer. 2011;11:248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Diermeier S, Horváth G, Knuechel-Clarke R, Hofstaedter F, Söllosi J, Brockhoff G. Epidermal growth factor receptor coexpression modulates susceptibility to herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation. Exp Cell Res. 2005;304:604–19.

    Article  CAS  PubMed  Google Scholar 

  432. Kataoka Y, Mukohara T, Shimada H, Saijo N, Hirai M, Minami H. Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Ann Oncol. 2010;21:255–62.

    Article  CAS  PubMed  Google Scholar 

  433. Figueroa-Magalhães MC, Jelovac D, Connolly RM, Wolff AC. Treatment of HER2-positive breast cancer. Breast. 2014;23:128–36.

    Article  PubMed  Google Scholar 

  434. D'Alessio A, De Luca A, Maiello MR, et al. Effects of the combined blockade of EGFR and ErbB-2 on signal transduction and regulation of cell cycle regulatory proteins in breast cancer cells. Breast Cancer Res Treat. 2009;123:387–96.

    Article  PubMed  CAS  Google Scholar 

  435. Versola MB, Burris S, Jones H, et al. Clinical activity of GW572016 in EGF10003 in patients with solid tumors. J Clin Oncol. 2004;22 (14S July 15 Suppl):3047.

    Google Scholar 

  436. Gomez HL, Doval DC, Chavez MA, et al. Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. J Clin Oncol. 2008;26:2999–3005.

    Article  CAS  PubMed  Google Scholar 

  437. Press MF, Finn RS, Cameron D, et al. HER-2 gene amplification, HER-2 and epidermal growth factor receptor mRNA and protein expression, and lapatinib efficacy in women with metastatic breast cancer. Clin Cancer Res. 2008;14:7861–70.

    Article  CAS  PubMed  Google Scholar 

  438. Ryan QA, Ibrahim MH, Cohen J, et al. FDA drug approval summary: lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncologist. 2008;13:1114–9.

    Article  CAS  PubMed  Google Scholar 

  439. Zhou X, Cella D, Cameron D, et al. Lapatinib plus capecitabine versus capecitabine alone for HER2+ (ErbB2+) metastatic breast cancer: quality-of-life assessment. Breast Cancer Res Treat. 2009;117:577–89.

    Article  CAS  PubMed  Google Scholar 

  440. Scaltriti M, Verma C, Guzman M, et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene. 2009;28:803–14.

    Article  CAS  PubMed  Google Scholar 

  441. Toi M, Iwata M, Fujiwara Y, et al. Lapatinib monotherapy in patients with relapsed, advanced, or metastatic breast cancer: efficacy, safety, and biomarker results from Japanese patients phase II studies. Br J Cancer. 2009;101:1676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  442. Xia W, Gerard CM, Liu L, Baudson NM, Ory TL, Spector NL. Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and 73 ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene. 2005;24:6213–21.

    Article  CAS  PubMed  Google Scholar 

  443. Vazquez-Martin A, Oliveras-Ferraros C, del Barco S, Martín-Castillo B, Menéndez JA. mTOR inhibitors and the anti-diabetic biguanide metformin: new insights into the molecular management of breast cancer resistance to the HER2 tyrosine kinase inhibitor lapatinib (Tykerb). Clin Transl Oncol. 2009;11:455–9.

    Article  CAS  PubMed  Google Scholar 

  444. Xia W, Bacus S, Hegde P, et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci U S A. 2006;103:7795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Tam IY, Leung EL, Tin VP, et al. Double EGFR mutants containing rare EGFR mutant types show reduced in vitro response to gefitinib compared with common activating missense mutations. Mol Cancer Ther. 2009;8:2142–51.

    Article  CAS  PubMed  Google Scholar 

  446. Bhosle J, Kiakos K, Porter AC, et al. Treatment with gefitinib or lapatinib induces drug resistance through downregulation of topoisomerase IIα expression. Mol Cancer Ther. 2013;12:2897–908.

    Article  CAS  PubMed  Google Scholar 

  447. Nevo J, Mattila E, Pellinen T, et al. Mammary-derived growth inhibitor alters traffic of EGFR and induces a novel form of cetuximab resistance. Clin Cancer Res. 2009;15:6570–81.

    Article  CAS  PubMed  Google Scholar 

  448. Meng X, Li Y, Tang H, et al. Drug response to HER2 gatekeeper T798M mutation in HER2-positive breast cancer. Amino Acids. 2015;48:487–97.

    Article  PubMed  CAS  Google Scholar 

  449. Vecchione A, Belletti B, Lovat F, et al. A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis. Proc Natl Acad Sci U S A. 2013;110:9845–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Pujade-Lauraine E, Hilpert F, Weber B, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial. J Clin Oncol. 2014;32:1302–8.

    Article  CAS  PubMed  Google Scholar 

  451. Bast Jr RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer. 2009;9:415–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  452. Verhaak RG, Tamayo P, Yang JY, et al. Cancer genome atlas research network prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest. 2013;123:517–25.

    CAS  PubMed  Google Scholar 

  453. Cho KR, Shih IM. Ovarian cancer. Annu Rev Pathol. 2009;4:287–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  454. Cancer Genome Atlas Research, Networks. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.

    Article  CAS  Google Scholar 

  455. Cancer Genome Atlas Research, Networks, Kandoth C, Schultz N, Cherniack AD, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73.

    Article  CAS  Google Scholar 

  456. Cuatrecasas M, Villanueva A, Matias-Guiu X, Prat J. K-ras mutations in mucinous ovarian tumors – a clinicopathologic and molecular study of 95 cases. Cancer. 1997;79:1581–6.

    Article  CAS  PubMed  Google Scholar 

  457. Bookman MA. Biological therapy of ovarian cancer: current directions. Semin Oncol. 1998;25:381–96.

    CAS  PubMed  Google Scholar 

  458. Kaye SB, Poole CJ, Dańska-Bidzińska A, et al. A randomized phase II study evaluating the combination of carboplatin-based chemotherapy with pertuzumab versus carboplatin based chemotherapy in patients with relapsed platinum sensitive ovarian cancer. Ann Oncol. 2013;24:145–52.

    Article  CAS  PubMed  Google Scholar 

  459. Amler L, Makhija S, Januario T, et al. Her 2 pathway gene expression analysis in a phase II study of pertuzumab + gemcitabine vs. gemcitabine + placebo in patients with platinum resistant epithelial ovarian cancer. J Clin Oncol. 2008;26:abstract 5562.

    Google Scholar 

  460. Makhija S, Glenn D, Ueland F, et al. Results from a phase II randomized, placebo-controlled, double-blind trial suggest improved PFS with the addition of pertuzumab to gemcitabine in patients with platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer. J Clin Oncol. 2007;25:18S-abstract 5507.

    Google Scholar 

  461. Gordon MS, Matei D, Aghajanian C, et al. Clinical activity of pertuzumab (rhuMAb2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predicative relationship between tumor HER 2 activation status. J Clin Oncol. 2006;24:4324–32.

    Article  CAS  PubMed  Google Scholar 

  462. Schilder RJ, Sill MW, Chen X, et al. Phase II study of Getinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecological Oncology Group Study. Clinical Cancer Res. 2005;11:5539–48.

    Article  CAS  Google Scholar 

  463. Nimeiri HS, Oza AM, Morgan RJ, et al. Efficacy and safety of bevacizumab plus erlotinib for patients with recurrent ovarian, primary peritoneal, and fallopian tube cancer: a trial of the Chicago, PMH, and California Phase II Consortia. Gynecol Oncol. 2008;110:49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  464. Apte SM, Bucana CD, Killion JJ, Gershenson DM, Fidler IJ. Expression of platelet-derived growth factor and activated receptor in clinical specimens of epithelial ovarian cancer and ovarian carcinoma cell lines. Gynecol Oncol. 2004;93:78–86.

    Article  CAS  PubMed  Google Scholar 

  465. Della Pepa C, Tonini G, Pisano C, et al. Ovarian cancer standard of care: are there real alternatives? Chin J Cancer. 2015;34:17–27.

    Article  CAS  PubMed  Google Scholar 

  466. Berasain C. Hepatocellular carcinoma and sorafenib: too many resistance mechanisms? Gut. 2013;62:1674–5.

    Article  CAS  PubMed  Google Scholar 

  467. Tang TC, Man S, Xu P, et al. Development of a resistance-like phenotype to sorafenib by human hepatocellular carcinoma cells is reversible and can be delayed by metronomic UFT chemotherapy. Neoplasia. 2010;12:928–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  468. Kuczynski EA, Lee CR, Man S, Chen E, Kerbel RS. Effects of sorafenib dose on acquired reversible resistance and toxicity in hepatocellular carcinoma. Cancer Res. 2015;75:2510–9.

    Article  CAS  PubMed  Google Scholar 

  469. Ohgaki H, Dessen P, Jourde B, et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res. 2004;64:6892–9.

    Article  CAS  PubMed  Google Scholar 

  470. Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170:1445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  471. Humphrey PA, Gangarosa LM, Wong AJ, et al. Deletion-mutant epidermal growth factor 76 receptor in human gliomas: effects of type II mutation on receptor function. Bioch and Biop Res Comm. 1991;178:1413–20.

    Article  CAS  Google Scholar 

  472. Lee JC, Vivanco I, Beroukhim R, et al. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Med. 2006;3, e485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  473. Frederick L, Wang XY, Eley G, James CD. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. 2000;60:1383–7.

    CAS  PubMed  Google Scholar 

  474. Peschard P, Park M. From Tpr-Met to Met, tumorigenesis and tubes. Oncogene. 2007;26:1276–85.

    Article  CAS  PubMed  Google Scholar 

  475. Moscatello DK, Holgado-Madruga M, Godwin AK, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res. 1995;55:5536–9.

    CAS  PubMed  Google Scholar 

  476. Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes and Dev. 2007;21:2683–710.

    Article  CAS  PubMed  Google Scholar 

  477. Downward J, Parker P, Waterfield MD. Autophosphorylation sites on the epidermal growth factor receptor. Nature. 1984;311:483–5.

    Article  CAS  PubMed  Google Scholar 

  478. Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene. 2000;19:6550–65.

    Article  CAS  PubMed  Google Scholar 

  479. Choe G, Horvath S, Cloughesy TF, et al. Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res. 2003;63:2742–6.

    CAS  PubMed  Google Scholar 

  480. Tanaka K, Babic I, Nathanson D, et al. Oncogenic EGFR signaling activates an mTORC2-NF-kappaB pathway that promotes chemotherapy resistance. Cancer Discov. 2011;1:524–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  481. Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353:2012–24.

    Article  CAS  PubMed  Google Scholar 

  482. Wang SI, Puc J, Li J, et al. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res. 1997;57:4183–6.

    CAS  PubMed  Google Scholar 

  483. Bonavia R, Inda MM, Vandenberg S, et al. EGFRvIII promotes glioma angiogenesis and growth through the NF-kappaB, interleukin-8 pathway. Oncogene. 2012;31:4054–66.

    Article  CAS  PubMed  Google Scholar 

  484. Wu JL, Abe T, Inoue R, Fujiki M, Kobayashi H. IkappaBalphaM suppresses angiogenesis and tumorigenesis promoted by a constitutively active mutant EGFR in human glioma cells. Neurol Res. 2004;26:785–91.

    Article  CAS  PubMed  Google Scholar 

  485. Wang SC, Hung MC. Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clin Cancer Res. 2009;15:6484–9.

    Article  CAS  PubMed  Google Scholar 

  486. Boerner JL, Demory ML, Silva C, Parsons SJ. Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol Cell Biol. 2004;24:7059–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  487. Snuderl M, Fazlollahi L, Le LP, et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell. 2011;20:810–7.

    Article  CAS  PubMed  Google Scholar 

  488. Little SE, Popov S, Jury A, et al. Receptor tyrosine kinase genes amplified in glioblastoma exhibit a mutual exclusivity in variable proportions reflective of individual tumor heterogeneity. Cancer Res. 2012;72:1614–20.

    Article  CAS  PubMed  Google Scholar 

  489. Jun HJ, Acquaviva J, Chi D, J et al. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme. Oncogene. 2012;31:3039–50.

    Google Scholar 

  490. Bao SQ, Wu Q, McLendon RE, et al. Glioma stem cells promote radio resistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.

    Article  CAS  PubMed  Google Scholar 

  491. Tamura K, Aoyagi M, Ando N, et al. Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy. J Neuros. 2013;119:1145–55.

    Article  Google Scholar 

  492. Eimer S, Dugay F, Airiau K, et al. Cyclopamine cooperates with EGFR inhibition to deplete stem-like cancer cells in glioblastoma-derived spheroid cultures. Neuro Oncol. 2012;14:1441–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  493. Wykosky J, Hu J, Gomez GG, et al. A urokinase receptor-Bim signaling axis emerges during EGFR inhibitor resistance in mutant EGFR glioblastoma. Cancer Res. 2015;15(75):394–404.

    Article  CAS  Google Scholar 

  494. Aljohani H, Koncar RF, Zarzour A, Park BS, Lee SH, Bahassi el M. ROS1 amplification mediates resistance to gefitinib in glioblastoma cells Oncotarget. 2015;6:20388–95.

    Google Scholar 

  495. Roth P, Weller M. Challenges to targeting epidermal growth factor receptor in glioblastoma: escape mechanisms and combinatorial treatment strategies. Neuro Oncol. 2014;16:viii14-19.

    Google Scholar 

  496. Kang CS, Pu PY, Li YH, et al. An in vitro study on the suppressive effect of glioma cell growth induced by plasmid-based small interference RNA (siRNA) targeting human epidermal growth factor receptor. J Neurooncol. 2005;74:267–73.

    Article  CAS  PubMed  Google Scholar 

  497. Nagane M, Levitzki A, Gazit A, Huang HJ. Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci U S A. 1998;95:5724–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  498. Fan QW, Cheng CK, Gustafson WC, et al. EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell. 2013;24:438–49.

    Article  CAS  PubMed  Google Scholar 

  499. Inda MM, Bonavia R, Mukasa A, et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev. 2010;24:1731–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  500. Johnson H, Del Rosario AM, Bryson BD, Schroeder MA, Sarkaria JN, White FM. Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts. Mol Cell Proteomics. 2012;11:1724–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  501. Lal B, Goodwin CR, Sang Y, et al. EGFRvIII and c-Met pathway inhibitors synergize against PTEN-null/EGFRvIII+ glioblastoma xenografts. Mol Cancer Ther. 2009;8:1751–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  502. Hu J, Jo M, Cavenee WK, Furnari F, VandenBerg SR, Gonias SL. Crosstalk between the urokinase-type plasminogen activator receptor and EGF receptor variant III supports survival and growth of glioblastoma cells. Proc Natl Acad Sci U S A. 2011;108:15984–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  503. Chakravarti A, Loeffler JS, Dyson NJ. Insulin-like growth factor receptor I mediates resistance to anti–epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res. 2002;62:200–7.

    CAS  PubMed  Google Scholar 

  504. Lotsch D, Steiner E, Holzmann K, et al. Major vault protein supports glioblastoma survival and migration by upregulating the EGFR/PI3K signalling axis. Oncotarget. 2013;4:1904–18.

    Article  PubMed  PubMed Central  Google Scholar 

  505. Wick W, Weller M, van den Bent M, Stupp R. Bevacizumab and recurrent malignant gliomas: a European perspective. J Clin Oncol. 2010;28:e188–9; author reply e190–182.

    Google Scholar 

  506. Zhang M, Ye G, Li J, Wang Y. Recent advance in molecular angiogenesis in glioblastoma: the challenge and hope for anti-angiogenic therapy. Brain Tumor Pathol. 2015;32:229–36.

    Article  CAS  PubMed  Google Scholar 

  507. Zuniga RM, Torcuator R, Jain R, et al. Efficacy, safety and patterns of response and recurrence in patients with recurrent high‐grade gliomas treated with bevacizumab plus irinotecan. J Neurooncol. 2009;91:329–36.

    Article  CAS  PubMed  Google Scholar 

  508. Bergers G, Hanahan D. Modes of resistance to anti‐angiogenic therapy. Nat Rev Cancer. 2008;8:592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  509. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest. 2010;120:694–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  510. Ebos JM, Lee CR, Christensen JG, Mutsaers AJ, Kerbel RS. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci U S A. 2007;104:17069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  511. Reardon DA, Turner S, Peters KB, et al. A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J Natl Compr Canc Netw. 2011;9:414–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  512. Paez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15:220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  513. Kunkel P, Ulbricht U, Bohlen P, et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor- 2. Cancer Res. 2001;61:6624–8.

    CAS  PubMed  Google Scholar 

  514. Kamoun WS, Ley CD, Farrar CT, et al. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol. 2009;27:2542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  515. Ciardiello F, Bianco R, Damiano V, et al. Antiangiogenic and antitumor activity of anti–epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin Cancer Res. 2000;6:3739–47.

    CAS  PubMed  Google Scholar 

  516. Ko AH, Youssoufian H, Gurtler J, et al. A phase II randomized study of cetuximab and bevacizumab alone or in combination with gemcitabine as first-line therapy for metastatic pancreatic adenocarcinoma. Invest New Drugs. 2012;30:1597–606.

    Article  CAS  PubMed  Google Scholar 

  517. Heinemann V, Vehling-Kaiser U, Waldschmidt D, et al. Gemcitabine plus erlotinib followed by capecitabine versus capecitabine plus erlotinib followed by gemcitabine in advanced pancreatic cancer: final results of a randomised phase 3 trial of the ‘Arbeitsgemeinschaft Internistische Onkologie’ (AIO-PK0104). Gut. 2013;62:571–9.

    Article  CAS  Google Scholar 

  518. Philip PA, Lutz MP. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer. Pancreas. 2015;44:1046–52.

    Article  CAS  PubMed  Google Scholar 

  519. Kim ST, Lim do H, Jang KT. Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Mol Cancer Ther. 2011;10:1993–9.

    Article  CAS  PubMed  Google Scholar 

  520. Propper D, Davidenko I, Bridgewater J, et al. Phase II, randomized, biomarker identification trial (MARK) for erlotinib in patients with advanced pancreatic carcinoma. Ann Oncol. 2014;25:1384–90.

    Article  CAS  PubMed  Google Scholar 

  521. Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  522. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354:567–78.

    Article  CAS  PubMed  Google Scholar 

  523. Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359:1116–27.

    Article  CAS  PubMed  Google Scholar 

  524. Vermorken JB, Trigo J, Hitt R, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol. 2007;25:2171–7.

    Article  CAS  PubMed  Google Scholar 

  525. Baselga J, Trigo JM, Bourhis J, et al. Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinumrefractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J Clin Oncol. 2005;23:5568–77.

    Article  CAS  PubMed  Google Scholar 

  526. Herbst RS, Arquette M, Shin DM, et al. Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J Clin Oncol. 2005;23:5578–87.

    Article  CAS  PubMed  Google Scholar 

  527. Ang KK, Berkey BA, Tu X, et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 2002;62:7350–6.

    CAS  PubMed  Google Scholar 

  528. Bentzen SM, Atasoy BM, Daley FM, et al. Epidermal growth factor receptor expression in pretreatment biopsies from head and neck squamous cell carcinoma as a predictive factor for a benefit from accelerated radiation therapy in a randomized controlled trial. J Clin Oncol. 2005;23:5560–7.

    Article  CAS  PubMed  Google Scholar 

  529. Machiels JP, Subramanian S, Ruzsa A, et al. Zalutumumab plus best supportive care versus best supportive care alone in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck after failure of platinum-based chemotherapy: an open-label, randomised phase 3 trial. Lancet Oncol. 2011;12:333–43.

    Article  CAS  PubMed  Google Scholar 

  530. Wirth LJ, Allen AM, Posner MR, et al. Phase I dose-finding study of paclitaxel with panitumumab, carboplatin and intensity-modulated radiotherapy in patients with locally advanced squamous cell cancer of the head and neck. Ann Oncol. 2010;21:342–7.

    Article  CAS  PubMed  Google Scholar 

  531. Ramakrishnan MS, Eswaraiah A, Crombet T, et al. Nimotuzumab, a promising therapeutic monoclonal for treatment of tumors of epithelial origin. MAbs. 2009;1:41–8.

    Article  PubMed  PubMed Central  Google Scholar 

  532. Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol. 2004;22:77–85.

    Article  CAS  PubMed  Google Scholar 

  533. Martins RG, Parvathaneni U, Bauman JE, et al. Cisplatin and radiotherapy with or without erlotinib in locally advanced squamous cell carcinoma of the head and neck: a randomized phase II trial. J Clin Oncol. 2013;31:1415–21.

    Article  CAS  PubMed  Google Scholar 

  534. Harrington K, Berrier A, Robinson M, et al. Randomised Phase II study of oral lapatinib combined with chemoradiotherapy in patients with advanced squamous cell carcinoma of the head and neck: rationale for future randomised trials in human papilloma virus-negative disease. Eur J Cancer. 2013;49:1609–18.

    Article  CAS  PubMed  Google Scholar 

  535. Del Campo JM, Hitt R, Sebastian P, et al. Effects of lapatinib monotherapy: results of a randomised phase II study in therapy-naive patients with locally advanced squamous cell carcinoma of the head and neck. Br J Cancer. 2011;105:618–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  536. de Souza JA, Davis DW, Zhang Y, et al. A phase II study of lapatinib in recurrent/metastatic squamous cell carcinoma of the head and neck. Clin Cancer Res. 2012;18:2336–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  537. Seiwert TY, Fayette J, Cupissol D, et al. A randomized, phase II study of afatinib versus cetuximab in metastatic or recurrent squamous cell carcinoma of the head and neck. Ann Oncol. 2014;25:1813–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  538. Carla C, Daris F, Cecilia B, Francesca B, Francesca C, Paolo F. Angiogenesis in head and neck cancer: a review of the literature. J Oncol. 2012;2012:358472.

    Article  PubMed  CAS  Google Scholar 

  539. Hasina R, Whipple M, Martin L, Kuo WP, Ohno-Machado L, Lingen MW. Angiogenic heterogeneity in head and neck squamous cell carcinoma: biological and therapeutic implications Lab. Invest. 2008;88:342–53.

    CAS  Google Scholar 

  540. Vokes EE, Cohen EEW, Mauer AM, et al. A phase I study of erlotinib and bevacizumab for recurrent or metastatic squamous cell carcinoma of the head and neck (HNC). J Clin Oncol. 2005;23:(16 Suppl):5504.

    Google Scholar 

  541. Karamouzis MV, Friedland D, Johnson R, Rajasenan K, Branstetter B, Argiris A. Phase II trial of pemetrexed (P) and bevacizumab (B) in patients (pts) withrecurrent or metastatic head and neck squamous cell carcinoma (HNSCC): an interiman analysis. J Clin Oncol. 2007;25(18 Suppl):6049.

    Google Scholar 

  542. Choong NW, Kozloff M, Taber D, et al. Phase II study of sunitinib malate in head and neck squamous cell carcinoma. Invest New Drugs. 2010;28:677–83.

    Article  CAS  PubMed  Google Scholar 

  543. Fountzilas G, Fragkoulidi A, Kalogera-Fountzila A, et al. A phase II study of sunitinib in patients with recurrent and/or metastatic non-nasopharyngeal head and neck cancer. Cancer Chemoth Pharmacol. 2010;65:649–60.

    Article  CAS  Google Scholar 

  544. Machiels JP, Henry S, Zanetta S, et al. Phase II study of sunitinib in recurrent or metastatic squamous cell carcinoma of the head and neck: GORTEC 2006-01. J Clin Oncol. 2010;28:21–8.

    Article  CAS  PubMed  Google Scholar 

  545. Kim S, Yazici YD, Calzada G, et al. Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Mol Cancer Ther. 2007;6:1785–92.

    Article  CAS  PubMed  Google Scholar 

  546. Elser C, Siu LL, Winquist E, et al. Phase II trial of sorafenib in patients with recurrent or metastatic squamous cell carcinoma of the head and neck or nasopharyngeal carcinoma. J Clin Oncol. 2007;25:3766–73.

    Article  CAS  PubMed  Google Scholar 

  547. Williamson SK, Moon J, Huang CH, et al. Phase II evaluation of sorafenib in advanced and metastatic squamous cell carcinoma of the head and neck: southwest Oncology Group Study S0420. J Clin Oncol. 2010;28:3330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest Statement

All authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Mirone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mirone, G., Perna, S., Marfe, G. (2016). Resistance to Tyrosine Kinase Inhibitors in Different Types of Solid Cancer. In: Focosi, D. (eds) Resistance to Tyrosine Kinase Inhibitors. Resistance to Targeted Anti-Cancer Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-46091-8_2

Download citation

Publish with us

Policies and ethics