Advertisement

An Adhesive Secreted by Australian Frogs of the Genus Notaden

  • Lloyd D. Graham
  • Veronica Glattauer
  • Yong Y. Peng
  • Paul R. Vaughan
  • Jerome A. Werkmeister
  • Michael J. Tyler
  • John A. M. RamshawEmail author
Chapter

Abstract

When provoked, the Australian fossorial frog Notaden bennettii secretes from its dorsal skin an exudate which rapidly forms a tacky elastic hydrogel. This protein-based material acts as a promiscuous pressure-sensitive adhesive which works even in wet conditions. The largest protein, Nb-1R, is rich in Gly, Pro/Hyp and Glx and appears to be the key structural component; it probably contains extensive segments of intrinsic disorder along with some well-folded domains. Indeed, the material properties of adhesive secretions from both amphibians (vertebrates) and onychophorans (invertebrates) may rely upon large proteins containing long and intrinsically unstructured regions composed of imperfect tandem repeats. Although the N. bennettii secretion contains sterols, carotenoids and other undesirable metabolites, in vitro, ex vivo and in vivo studies suggest that the structural matrix of the set glue is highly biocompatible. Its open porous structure is likely to encourage cell infiltration, and glue pellets implanted subcutaneously in mice were fully resorbed by the surrounding tissues within two months. Ex vivo studies in sheep showed that the frog glue bonded meniscal tears more strongly than traditional protein-based medical glues, while conventional tendon attachment repairs were approximately doubled in strength when augmented with the frog adhesive. Overall, the properties of the frog glue suggest that a recombinant mimic would have great potential for medical applications.

Keywords

Meniscal Tear Meniscal Repair Peel Strength Skin Secretion Meniscal Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank Joel Mackay (Sydney University) for the CD spectrum; Raju Adhikari, Lawry McCarthy, Helmut Thissen and Tony Cripps (CSIRO) for the help with the adhesive strength tests; and Graham Johnson and Meg Evans (CSIRO) for the bovine corneal organ culture and epithelial cell culture tests.

References

  1. Apponyi MA, Pukala TL, Brinkworth CS, Maselli VM, Bowie JH, Tyler MJ, Booker GW, Wallace JC, Carver JA, Separovic F, Doyle J, Llewellyn LE (2004) Host-defence peptides of Australian anurans: structure, mechanism of action and evolutionary significance. Peptides 25:1035–1054CrossRefPubMedGoogle Scholar
  2. Atta A, Ilyas A, Hashim Z, Ahmed A, Zarina S (2014) Lactate dehydrogenase like crystallin: a potentially protective shield for Indian spiny-tailed lizard (Uromastyx hardwickii) lens against environmental stress? Protein J 33:128–34CrossRefPubMedGoogle Scholar
  3. Barker J, Grigg GC, Tyler MJ (1995) A field guide to Australian frogs. Surrey Beatty, Chipping NortonGoogle Scholar
  4. Benkendorff K, Beardmore K, Gooley AA, Packer NH, Tait NN (1999) Characterisation of the slime gland secretion from the peripatus, Euperipatoides kanangrensis (Onychophora : Peripatopsidae). Comp Biochem Physiol B 124:457–465CrossRefGoogle Scholar
  5. Brodie ED, Gibson LS (1969) Defensive behaviour and skin glands of the northwestern salamander, Ambystoma gracile. Herpetologica 25:187–194Google Scholar
  6. Brodsky B, Ramshaw JAM (1997) The collagen triple-helix structure. Matrix Biol 15:545–554CrossRefPubMedGoogle Scholar
  7. Burzio LO, Burzio VA, Silva T, Burzio LA, Pardo J (1997) Environmental bioadhesion: themes and applications. Curr Opin Biotechnol 8:309–312CrossRefPubMedGoogle Scholar
  8. Channing AE (2001) Amphibians of central and southern Africa. Comstock, IthicaGoogle Scholar
  9. Crisp DJ, Walker G, Young GA, Yule AB (1985) Adhesion and substrate choice in mussels and barnacles. J Colloid Interface Sci 104:40–50CrossRefGoogle Scholar
  10. Deming TJ (1999) Mussel byssus and biomolecular materials. Curr Opin Chem Biol 3:100–105CrossRefPubMedGoogle Scholar
  11. Doolittle RF (1986) Of URFs and ORFs: a primer on how to analyze derived amino acid sequences. University Science, California, p 55Google Scholar
  12. Doyle J, Brinkworth CS, Wegener KL, Carver JA, Llewellyn LE, Olver IN, Bowie JH, Wabnitz PA, Tyler MJ (2003) nNOS inhibition, antimicrobial and anticancer activity of the amphibian skin peptide, citropin 1.1 and synthetic modifications. The solution structure of a modified citropin 1.1. Eur J Biochem 270:1141–1153CrossRefPubMedGoogle Scholar
  13. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  14. Evans CM, Brodie ED (1994) Adhesive strength of amphibian skin secretions. J Herpetol 28:502–504CrossRefGoogle Scholar
  15. Frost-Mason S, Morrison R, Mason K (1994) Pigmentation. In: Heatwole H, Barthalmus GT (eds) Amphibian biology, vol 1. Surrey Beatty, Chipping Norton, pp 64–97Google Scholar
  16. Gieseg SP, Simpson JA, Charlton TS, Duncan MW, Dean RT (1993) Protein-bound 3,4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins. Biochemistry 32:4780–4786CrossRefPubMedGoogle Scholar
  17. Graham LD, Glattauer V, Huson MG, Maxwell JM, Knott RB, White JF, Vaughan PR, Peng Y, Tyler MJ, Werkmeister JA, Ramshaw JAM (2005) Characterization of a protein-based adhesive elastomer secreted by the Australian frog Notaden bennettii. Biomacromolecules 6:3300–3312CrossRefPubMedGoogle Scholar
  18. Graham LD, Danon SJ, Johnson G, Braybrook C, Hart NK, Varley RJ, Evans MDM, McFarland GA, Tyler MJ, Werkmeister JA, Ramshaw JAM (2010) Biocompatibility and modification of the protein-based adhesive secreted by the Australian frog Notaden bennetti. J Biomed Mater Res A 93:429–441PubMedGoogle Scholar
  19. Graham LD, Glattauer V, Li D, Tyler MJ, Ramshaw JAM (2013) The adhesive skin exudate of Notaden bennetti frogs (Anura: Limnodynastidae) has similarities to the prey capture glue of Euperipatoides sp. velvet worms (Onychophora: Peripatopsidae). Comp Biochem Physiol B 165:250–259CrossRefPubMedGoogle Scholar
  20. Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116CrossRefPubMedGoogle Scholar
  21. Gross M (2011) Getting stuck in. Chem World 8(12):52–55Google Scholar
  22. Hamning VK, Yanites HL, Peterson NL (2000) Characterization of adhesive and neurotoxic components in skin granular gland secretions of Ambystoma tigrinum. Copeia 2000:856–859CrossRefGoogle Scholar
  23. Harada N, Iijima S, Kobayashi K, Yoshida T, Brown WR, Hibi T, Oshima A, Morikawa M (1997) Human IgGFc binding protein (FcgammaBP) in colonic epithelial cells exhibits mucin-like structure. J Biol Chem 272:15232–15241CrossRefPubMedGoogle Scholar
  24. Haritos VS, Niranjane A, Weisman S, Trueman HE, Sriskantha A, Sutherland TD (2010) Harnessing disorder: onychophorans use highly unstructured proteins, not silks, for prey capture. Proc R Soc B 277:3255–3263CrossRefPubMedPubMedCentralGoogle Scholar
  25. Huber T, Grama L, Hetényi C, Schay G, Fülöp L, Penke B, Kellermayer MS (2012) Conformational dynamics of titin PEVK explored with FRET spectroscopy. Biophys J 103:1480–1489CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jilek A, Mollay C, Tippelt C, Grassi J, Mignogna G, Müllegger J, Sander V, Fehrer C, Barra D, Kreil G (2005) Biosynthesis of a D-amino acid in peptide linkage by an enzyme from frog skin secretions. Proc Natl Acad Sci U S A 102:4235–4239CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kamino K, Inoue K, Maruyama T, Takamatsu N, Harayama S, Shizuri Y (2000) Barnacle cement proteins. J Biol Chem 275:27360–27365PubMedGoogle Scholar
  28. Largen W, Woodley SK (2008) Cutaneous tail glands, noxious skin secretions, and scent marking in a terrestrial salamander (Plethodon shermani). Herpetologica 64:270–280CrossRefGoogle Scholar
  29. MedMarket (2002) MedMarket Diligence Report #S120, Worldwide Wound Sealant Market, Medmarket Diligence, Foothill Ranch, CAGoogle Scholar
  30. Millar NL, Bradley TA, Walsh NA, Appleyard RC, Tyler MJ, Murrell GA (2009) Frog glue enhances rotator cuff repair in a laboratory cadaveric model. J Shoulder Elbow Surg 18:639–645CrossRefPubMedGoogle Scholar
  31. Monahan J, Wilker JJ (2004) Cross-linking the protein precursor of marine mussel adhesives: bulk measurements and reagents for curing. Langmuir 20:3724–3729CrossRefPubMedGoogle Scholar
  32. Naldrett MJ, Kaplan DL (1997) Characterization of barnacle (Balanus eburneus and B. cenatus) adhesive proteins. Marine Biol 127:629–635CrossRefGoogle Scholar
  33. Phillips B, Shine R (2007) When dinner is dangerous: Toxic frogs elicit species-specific responses from a generalist snake predator. Am Nat 170:936–942CrossRefPubMedGoogle Scholar
  34. Rauscher S, Baud S, Miao M, Keeley FW, Pomès R (2006) Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure 14:1667–1676CrossRefPubMedGoogle Scholar
  35. Roeddecker K, Muennich U, Nagelschmidt M (1994) Meniscal healing: a biomechanical study. J Surg Res 56:20–27CrossRefPubMedGoogle Scholar
  36. Schmidt-Dannert C, Umeno D, Arnold FH (2000) Molecular breeding of carotenoid biosynthetic pathways. Nat Biotechnol 18:750–753CrossRefPubMedGoogle Scholar
  37. Szomor ZL, Murrell GAC, Appleyard RC, Tyler MJ (2008) Meniscal repair with a new biological glue: an ex vivo study. Tech Knee Surg 7:261–265CrossRefGoogle Scholar
  38. Tatham AS, Shewry PR (2000) Elastomeric proteins: biological roles, structures and mechanisms. Trends Biochem Sci 25:567–571CrossRefPubMedGoogle Scholar
  39. Tompa P (2010) Structure and function of intrinsically disordered proteins. CRC Press/Chapman and Hall, New York, p 166Google Scholar
  40. Tyler MJ (2010) Adhesive dermal secretions of the amphibia, with particular reference to the Australian Limnodynastid Genus Notaden. In: Biological adhesive systems: from nature to technical and medical application. Springer, Vienna and New York, pp 181–186Google Scholar
  41. Tyler MJ, Ramshaw JAM (2002) International Patent Application WO200222756-A1Google Scholar
  42. Tyler MJ, Stone DJ, Bowie JH (1992) A novel method for the release and collection of dermal, glandular secretions from the skin of frogs. J Pharmacol Toxicol Methods 28:199–200CrossRefPubMedGoogle Scholar
  43. von Byern J, Dicke U, Heiss E, Grunwald I, Gorb S, Staedler Y, Cyran N (2015) Morphological characterization of the glandular system in the salamander Plethodon shermani (Caudata, Plethodontidae). Zoology 118:334–47CrossRefGoogle Scholar
  44. Waite JH (1993) Polyphenolic substance of Mytilus edulis: novel adhesive containing L-Dopa and hydroxyproline. Science 212:1038–1040CrossRefGoogle Scholar
  45. Williams TA, Anthony CD (1994) Technique to isolate salamander granular gland products with a comment on the evolution of adhesiveness. Copeia 1994:540–541CrossRefGoogle Scholar
  46. Williams TA, Larsen JH (1986) New function for the granular skin glands of the eastern long-toed salamander, Ambystoma macrodactylum columbianum. J Exp Zool 239:329–333CrossRefGoogle Scholar
  47. Williams CR, Brodie ED Jr, Tyler MJ, Walker SJ (2000) Antipredator mechanisms of Australian frogs. J Herpetol 34:431–443CrossRefGoogle Scholar
  48. Yang YJ, Jung D, Yang B, Hwang BH, Cha HJ (2014) Aquatic proteins with repetitive motifs provide insights to bioengineering of novel biomaterials. Biotechnol J 9:1493–1502CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lloyd D. Graham
    • 1
  • Veronica Glattauer
    • 2
  • Yong Y. Peng
    • 2
  • Paul R. Vaughan
    • 2
  • Jerome A. Werkmeister
    • 2
  • Michael J. Tyler
    • 3
  • John A. M. Ramshaw
    • 2
    Email author
  1. 1.CSIRO AlumnusNorth EppingAustralia
  2. 2.Ian Wark LaboratoryCSIRO ManufacturingClayton SouthAustralia
  3. 3.School of Earth and Environmental Sciences, University of AdelaideAdelaideAustralia

Personalised recommendations