Skip to main content

Symbolic Robot Commanding Utilizing Physical Properties - System Overview

  • Conference paper
  • First Online:
Book cover KI 2016: Advances in Artificial Intelligence (KI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9904))

  • 1277 Accesses

Abstract

One long term goal of artificial intelligence and robotics research is the development of robot systems, which have approximately the same cognitive, communicational, and handling abilities like humans. This yields several challenges for future robot systems. For instance in the field of communicational abilities, future robot systems have to bridge between natural communication methods of the human, primarily utilizing symbols like words or gestures, and the natural communication methods of artificial systems, primarily utilizing low-level subsymbolic control interfaces. In this work, we outline a system which utilizes physical properties, respectively physical effects for the mapping between a high-level symbolic user interface and a low-level subsymbolic robot control interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Schutter, J., De Laet, T., Rutgeerts, J., Decré, W., Smits, R., Aertbeliën, E., Claes, K., Bruyninckx, H.: Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty. Int. J. Robot. Res. 26(5), 433–455 (2007)

    Article  Google Scholar 

  2. Finkemeyer, B., Kroger, T., Wahl, F.M.: The adaptive selection matrix a key component for sensor-based control of robotic manipulators. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3855–3862. IEEE (2010)

    Google Scholar 

  3. Harnad, S.: The symbol grounding problem. Phys. D Nonlinear Phenom. 42(1), 335–346 (1990)

    Article  MathSciNet  Google Scholar 

  4. Coradeschi, S., Loutfi, A., Wrede, B.: A short review of symbol grounding in robotic and intelligent systems. KI-Künstliche Intelligenz 27(2), 129–136 (2013)

    Article  Google Scholar 

  5. Vogt, P.: The physical symbol grounding problem. Cogn. Syst. Res. 3(3), 429–457 (2002)

    Article  Google Scholar 

  6. Cangelosi, A.: Grounding language in action and perception: from cognitive agents to humanoid robots. Phys. life Rev. 7(2), 139–151 (2010)

    Article  Google Scholar 

  7. Lauria, S., Bugmann, G., Kyriacou, T., Klein, E.: Mobile robot programming using natural language. Robot. Auton. Syst. 38(3), 171–181 (2002)

    Article  Google Scholar 

  8. Kemke, C.: “From Saying to doing”- Natural Language Interaction with Artificial Agents and Robots. INTECH Open Access Publisher (2007)

    Google Scholar 

  9. Matuszek, C., Herbst, E., Zettlemoyer, L., Fox, D.: Learning to parse natural language commands to a robot control system. In: Desai, J.P., Dudek, G., Khatib, O., Kumar, V. (eds.) Experimental Robotics. STAR, vol. 88, pp. 403–415. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Kollar, T., Tellex, S., Roy, D., Roy, N.: Grounding verbs of motion in natural language commands to robots. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics. STAR, vol. 79, pp. 31–47. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Laengle, T., Lueth, T.C., Stopp, E., Herzog, G., Kamstrup, G.: Kantra-a natural language interface for intelligent robots. In: Intelligent Autonomous Systems (IAS 4), pp. 357–364 (1995)

    Google Scholar 

  12. Knoll, A., Hildenbrandt, B., Zhang, J.: Instructing cooperating assembly robots through situated dialogues in natural language. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 888–894. IEEE (1997)

    Google Scholar 

  13. Pires, N.: Robot-by-voice: experiments on commanding an industrial robot using the human voice. Ind. Robot Int. J. 32(6), 505–511 (2005)

    Article  MathSciNet  Google Scholar 

  14. Tenorth, M., Nyga, D., Beetz, M.: Understanding and executing instructions for everyday manipulation tasks from the world wide web. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1486–1491. IEEE (2010)

    Google Scholar 

  15. Stenmark, M., Nugues, P.: Natural language programming of industrial robots. In: 44th International Symposium on Robotics (ISR), pp. 1–5. IEEE (2013)

    Google Scholar 

  16. Misra, D.K., Sung, J., Lee, K., Saxena, A.: Tell me dave: context-sensitive grounding of natural language to manipulation instructions. In: Proceedings of Robotics: Science and Systems (RSS), Berkeley, USA (2014). doi:10.15607/RSS.2014.X.005

  17. Spangenberg, M., Henrich, D.: Grounding of actions based on verbalized physical effects and manipulation primitives. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 844–851. IEEE (2015)

    Google Scholar 

  18. Bonasso, R.P., Firby, R.J., Gat, E., Kortenkamp, D., Miller, D.P., Slack, M.G.: Experiences with an architecture for intelligent, reactive agents. J. Exp. Theor. Artif. Intell. 9(2–3), 237–256 (1997)

    Article  Google Scholar 

  19. Spangenberg, M., Henrich, D.: Towards a domain specific language for sensor-based actions. Appl. Mech. Mater. 840, 42–49 (2016)

    Article  Google Scholar 

  20. International Organization of Standardization: ISO Standards Handbook: Quantifies and Units (1993)

    Google Scholar 

  21. Awrejcewicz, J.: Classical Mechanics: Kinematics and Statics. Advances in Mechanics and Mathematics. Springer, New York (2012)

    MATH  Google Scholar 

  22. Spangenberg, M., Henrich, D.: Towards an intuitive interface for instructing robots handling tasks based on verbalized physical effects. In: RO-MAN: The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp. 79–84. IEEE (2014)

    Google Scholar 

  23. —: Symbol grounding for symbolic robot commands based on physical properties. In: IEEE International Conference on Information and Automation. IEEE (2016, accepted, to appear)

    Google Scholar 

  24. Thomas, U., Wahl, F.M.: Planning sensor feedback for assembly skills by using sensor state space graphs. In: Su, C.-Y., Rakheja, S., Liu, H. (eds.) ICIRA 2012, Part II. LNCS, vol. 7507, pp. 696–707. Springer, Heidelberg (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Spangenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Spangenberg, M., Henrich, D. (2016). Symbolic Robot Commanding Utilizing Physical Properties - System Overview. In: Friedrich, G., Helmert, M., Wotawa, F. (eds) KI 2016: Advances in Artificial Intelligence. KI 2016. Lecture Notes in Computer Science(), vol 9904. Springer, Cham. https://doi.org/10.1007/978-3-319-46073-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46073-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46072-7

  • Online ISBN: 978-3-319-46073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics