Skip to main content

Introduction: Best Matching and Best Match

  • Chapter
  • First Online:
Best Matching Theory & Applications

Part of the book series: Automation, Collaboration, & E-Services ((ACES,volume 3))

Abstract

This chapter presents the fundamentals of best matching in distributed systems of operations and decisions, along with several examples and illustrations. The purpose is to present the basic definitions of best matching in the context of distributed manufacturing, supply, and service systems, highlight its impact on the competitive performance of such systems, and outline the structure and objectives of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, G., & Livermore, C. (2016). Shape-selective assembly of anisotropic, deformable microcomponents using bottom-up micro-manufacturing. Micromachines, 7, 68–85.

    Article  Google Scholar 

  • Baker, M. B., & Sheasby, J. (1999). Extensions to the generalized assignment heuristic for vehicle routing. European Journal of Operational Research, 119, 147–157.

    Article  MATH  Google Scholar 

  • Barbas, J., & Marin, A. (2004). Maximal covering code multiplexing access telecommunication networks. European Journal of Operational Research, 159, 219–238.

    Article  MathSciNet  MATH  Google Scholar 

  • Barbati, M., Bruno, G., & Genovese, A. (2012). Applications of agent-based models for optimization problems: A literature review. Expert Systems with Applications, 39, 6020–6028.

    Article  Google Scholar 

  • Benjaafer, S., El-Hafsi, M., & de Vericourt, F. (2004). Demand allocation in multiple-product, multiple-facility, make-to-stock systems. Management Science, 50, 1431–1448.

    Article  Google Scholar 

  • Boffey, T. B. (1989). Location problems arising in computer networks. Journal of the Operational Research Society, 40, 347–354.

    Article  MATH  Google Scholar 

  • Bressoud, T. C., Rastogi, R., & Smith, M. A. (2003). Optimal configuration for BGP route selection. In Proceedings of IEEE INFOCOM’ 2003, 2nd Annual Joint Conference on the IEEE Computer and Communications Societies, San Francisco (Vol. 2, pp. 916–926).

    Google Scholar 

  • Buckingham, E. (1920). Manufacturing for selective assembly. Machinery, 27, 142–143.

    Google Scholar 

  • Burkard, R. E., Dell’Amico, M., & Martello, S. (2009). Assignment Problems. Siam, ISBN 978-1-611972-22-1.

    Google Scholar 

  • Campbell, G. M., & Diaby, M. (2002). Development and evaluation of an assignment heuristic for allocating cross-trained workers. European Journal of Operational Research, 138, 9–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Campbell, J. F., & Langevin, A. (1995). The snow disposal assignment problem. Journal of the Operational Research Society, 46, 919–929.

    Article  MATH  Google Scholar 

  • Carraresi, P., & Gallo, G. (1984). A multi-level bottleneck assignment approach to the bus drivers-rostering problem. European Journal of Operational Research, 16, 163–173.

    Article  MathSciNet  MATH  Google Scholar 

  • Cattrysse, D. G., & Van Wassenhove, L. N. (1992). A survey of algorithms for the generalized assignment problem. European Journal of Operational Research, 60, 260–272.

    Article  MATH  Google Scholar 

  • Cheng, C. H., Goh, C.-H., & Lee, A. (1996). Solving the generalized machine assignment problem in group technology. Journal of the Operational Research Society, 47, 794–802.

    Article  MATH  Google Scholar 

  • Chiam, T. C., & Nof, S. Y. (2005). Modeling and application of the best matching protocol. PRISM Research Memorandum No. 2005-P1, Purdue University, West Lafayette, IN.

    Google Scholar 

  • Colombo, A. W., Karnouskos, S., & Mendes, J. M. (2010). Factory of the future: A service-oriented system of modular, dynamic reconfigurable and collaborative systems artificial intelligence techniques for networked manufacturing enterprises management. Springer Series in Advanced Manufacturing, 459–481.

    Google Scholar 

  • Cromley, R. G., & Hanink, D. M. (1999). Coupling land use allocation models with raster GIS. Journal of Geographical Systems, 1, 137–153.

    Article  Google Scholar 

  • Drexl, A. (1991). Scheduling of project networks by job assignment. Management Science, 37, 1590–1602.

    Article  MATH  Google Scholar 

  • Foulds, L. R., & Wilson, J. M. (1999). On an assignment problem with side constraints. Computers & Industrial Engineering, 37, 847–858.

    Article  Google Scholar 

  • Franz, L. S., & Miller, J. L. (1993). Scheduling medical residents to rotations, solving the large-scale multi-period staff assignment problem. Operations Research, 41, 269–279.

    Article  Google Scholar 

  • Freling, R., Romeijn, H. E., Romero-Morales, D., & Wagelmans, A. P. M. (2003). A branch-and-price algorithm for the multi-period single-source problem. Operations Research, 51, 922–939.

    Article  MathSciNet  MATH  Google Scholar 

  • Gale, D., & Shapley, L. S. (1962). College admission and stability of marriage. The American Mathematical Monthly, 69, 9–15.

    Article  MathSciNet  MATH  Google Scholar 

  • Harvey, N. J. A., Ladner, R. E., Lovasz, L., & Tamir, T. (2006). Semi-matchings for bipartite graphs and load balancing. Journal of Algorithms, 59, 53–78.

    Article  MathSciNet  MATH  Google Scholar 

  • Jalisi, Q. W. Z., & Cheddad, H. (2000). Third party transportation, a case study. International Journal of Industrial Engineering, Theory Applications Practice, 7, 348–351.

    Google Scholar 

  • Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). A roadmap of agent research and development. Autonomous Agents and Multi-Agent Systems, 1, 7–38.

    Article  Google Scholar 

  • Kalagnanam, J. R., Davenport, A. J., & Lee, H. S. (2001). Computational aspects of clearing continuous call double auctions with assignment constraints and indivisible demand. Electronic Commerce Research, 1, 221–238.

    Article  MATH  Google Scholar 

  • Kang, H. (1994). Development of information exchange protocols for distributed inspection integration. M.S. Thesis. School of Industrial Engineering, Purdue University.

    Google Scholar 

  • Klastorin, T. D. (1979). On the maximal covering location problem and the generalized assignment problem. Management Science, 25, 107–112.

    Article  MATH  Google Scholar 

  • Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2, 83–97.

    Article  MathSciNet  MATH  Google Scholar 

  • LeBlanc, L. J., Shtub, A., & Anandalingam, G. (1999). Formulating and solving production planning problems. European Journal of Operational Research, 112, 54–80.

    Article  MATH  Google Scholar 

  • Lee, M.-K. (1992). A storage assignment policy in a man-on-board automated storage/retrieval system. International Journal of Production Research, 30, 2281–2292.

    Article  Google Scholar 

  • Lee, D.-H., & Kim, Y.-D. (1998). A multi-period order selection problem in flexible manufacturing systems. Journal of the Operational Research Society, 49, 278–287.

    Article  MATH  Google Scholar 

  • Leitão, P. (2009). Agent-based distributed manufacturing control: A state-of-the-art survey. Engineering Applications of Artificial Intelligence, 22, 979–991.

    Article  Google Scholar 

  • Littschwager, J. M., & Tcheng, T. H. (1967). Solution of a large-scale forest scheduling problem by linear programming decomposition. Journal of Forestry, 65, 644–646.

    Google Scholar 

  • Mansoor, E. M. (1961). Selective assembly—Its analysis and applications. International Journal of Production Research, 1, 13–24.

    Article  Google Scholar 

  • Mazzola, J., Neebe, A., & Dunn, C. (1989). Production planning of a flexible manufacturing system in a material requirements planning environment. International Journal of Flexible Manufacturing Systems, 1, 115–142.

    Article  Google Scholar 

  • Moghaddam, M., & Nof, S. Y. (2015a). The collaborative factory of the future. International Journal of Computer Integrated Manufacturing. doi:10.1080/0951192X.2015.1066034

  • Moghaddam, M., & Nof, S. Y. (2015b). Collaborative location-allocation decisions in networked v-Organizations. Research memo, PRISM Center, Purdue University.

    Google Scholar 

  • Moghaddam, M., Nof, S. Y., & Menipaz, E. (2015). Design and administration of collaborative networked headquarters. International Journal of Production Research. doi:10.1080/00207543.2015.1125544

  • Mori, Y., Ma, Z., Park, S., Hirai, Y., Tsuchiya, T., & Tabata, O. (2015). Proceedings of Transducers—2015, 18th International Conference on Solid-State Sensors, Actuators and Microsystems (pp. 1389–1392).

    Google Scholar 

  • Nof, S. Y. (Ed.). (1994a). Information and collaboration models of integration. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Nof, S. Y. (1994b). Recent developments in simulation of integrated engineering environments. In Proceedings of SCS Symposium on AI & Computer Simulation, Mexico City.

    Google Scholar 

  • Nof, S. Y. (2007). Collaborative control theory for e-Work, e-Production, and e-Service. Annual Reviews in Control, 31, 281–292.

    Article  Google Scholar 

  • Nof, S. Y. (2013). Research advances in manufacturing with service-oriented e-work and production (Plenary). IFAC Intelligent Manufacturing Systems Workshop, 11, 251–256.

    Google Scholar 

  • Nof, S. Y., Ceroni, J., Jeong, W., & Moghaddam, M. (2015). Revolutionizing collaboration through e-Work, e-Business, and e-Service. Springer series in ACES, Automation, Collaboration & E-Service. doi:10.1007/978-3-662-45777-1

  • Nof, S. Y., & Kang, H. (1996). Inspection-based integration protocols for best matching of components from distributed suppliers. IE Research Memo 96-K, Purdue University, West Lafayette, IN.

    Google Scholar 

  • Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science, 314, 1560–1563.

    Article  Google Scholar 

  • Nowakovski, J., Schwarzler, W., & Triesch, E. (1999). Using the generalized assignment problem in scheduling the ROSAT space telescope. European Journal of Operational Research, 112, 531–541.

    Article  MATH  Google Scholar 

  • Öncan, T. (2007). A survey of the generalized assignment problem and its applications. INFOR, 45, 123–141.

    MathSciNet  Google Scholar 

  • Privault, C., & Herault, L. (1998). Solving a real-world assignment problem with a metaheuristic. Journal of Heuristic, 4, 383–398.

    Article  MATH  Google Scholar 

  • Putnik, G., Sluga, A., ElMaraghy, H., Teti, R., Koren, Y., Tolio, T., et al. (2013). Scalability in manufacturing systems design and operation: State-of-the-art and future developments roadmap. CIRP Annals—Manufacturing Technology, 62, 751–774.

    Article  Google Scholar 

  • Ross, G. T., & Soland, R. M. (1977). Modeling facility location problems as generalized assignment problems. Management Science, 24, 345–357.

    Article  MATH  Google Scholar 

  • Ruland, K. S. (1999). A model for aeromedical routing and scheduling. International Transactions in Operational Research, 87, 57–73.

    Article  Google Scholar 

  • Shieh, H.-M., & May, M.-D. (2001). Solving the capacitated clustering problem with genetic algorithms. Journal of the Chinese Institute of Industrial Engineers, 18, 1–12.

    Article  Google Scholar 

  • Shtub, A. (1989). Modelling group technology cell formation as a generalized assignment problem. International Journal of Production Research, 27, 775–782.

    Article  Google Scholar 

  • Upadhayay, L., & Vrat, P. (2016). An ANP based selective assembly approach incorporating Taguchi’s quality loss function to improve quality of placements in technical institutions. TQM Journal, 28, 112–131.

    Article  Google Scholar 

  • Velásquez, J. D., & Nof, S. Y. (2007). Best-matching protocol for inspected supplies over collaborative e-Work networks. In Proceedings of ICPR-19, Valparaiso, Chile.

    Google Scholar 

  • Velásquez, J. D., & Nof, S. Y. (2008). A best-matching protocol for collaborative e-Work and e-Manufacturing. International Journal of Computer Integrated Manufacturing, 21, 943–956.

    Article  Google Scholar 

  • Votaw, D. F., & Orden, A. (1952). The personnel assignment problem. In Symposium on Linear Inequalities and Programming, SCOOP 10, US Air Force (pp. 155–163).

    Google Scholar 

  • Yu, Y., & Prasanna, V. K. (2003). Resource allocation for independent real-time tasks in heterogeneous systems for energy minimization. Journal of Information Science and Engineering, 19, 433–449.

    Google Scholar 

  • Zimokha, V. A., & Rubinstein, M. I. (1988). R & D planning and the generalized assignment problem. Automation and Remote Control, 49, 484–492.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Moghaddam .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moghaddam, M., Nof, S.Y. (2017). Introduction: Best Matching and Best Match. In: Best Matching Theory & Applications. Automation, Collaboration, & E-Services, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-46070-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46070-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46069-7

  • Online ISBN: 978-3-319-46070-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics