Skip to main content

Future Perspectives: Assessment Tools and Rehabilitation in the New Age

Abstract

The management of movement disorders (MDs) is a challenging task owing to the complexity of the disorders and the inability to monitor them in vivo. Parkinson’s disease (PD) is an MD that presents with many complex motor dysfunctions such as tremor, bradykinesia, rigidity, and gait impairments simultaneously. Current medical treatment options are not adequately targeting the patient’s individual needs and specific functional disabilities. Furthermore, exercise and traditional physical/occupational therapy fall short in this domain as well. In the larger context of rehabilitation, there are then two specific unmet needs: (a) objective personalized assessment of mobility in an ecological valid environment, such as the patient’s home or a similarly simulated environment, and (b) titration and optimization of the intervention, whether medical, surgical or physiotherapeutic, to the needs identified by the objective assessment of motor function. The possibility of using more objective and quantitative technology-based assessment techniques that are portable, wearable, and mobile has matured to the point that such devices are becoming cost effective and soon will be readily available. Conducting traditional assessments in a laboratory or clinical environment does not provide a realistic measure of the patient’s ability to perform daily tasks. The technology should be sent to the patient’s own home, or the environment simulated within the laboratory. Detailed at-home monitoring is now becoming available owing to the increasing affordability of wearable sensor technology and accompanying analysis software. The simulation of environments is becoming possible through virtual reality (VR) technology and has demonstrated great reliability and ease of use. VR allows the patients to experience a more natural environment that will allow assessment and potential training, while performing various tasks that participants would normally carry out during the day (e.g., crossing a busy street, grocery shopping, walking down a narrow hallway, etc.). This chapter reviews the current state of laboratory-based and wearable objective assessment tools. In addition, it explores the domain of VR in generating “real world” scenarios that can be used as ecologically valid assessment environments, which in turn can be considered for rehabilitative training.

Keywords

  • Rehabilitation
  • Parkinson’s disease
  • Virtual reality
  • Inertial sensors
  • Technology
  • Clinical assessment

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-46062-8_10
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-46062-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6
Fig. 10.7
Fig. 10.8
Fig. 10.9
Fig. 10.10
Fig. 10.11

Abbreviations

BG:

Basal ganglia

FOG:

Freezing of gait

IRED:

Infrared-emitting diode

LED:

Light-emitting diode

MD:

Movement disorder

PD:

Parkinson’s disease

UPDRS:

Unified Parkinson’s Disease Rating Scale

VR:

Virtual reality

References

  1. Yang K, Xiong WX, Liu FT, Sun YM, Luo S, Ding ZT, et al. Objective and quantitative assessment of motor function in Parkinson’s disease from the perspective of practical applications [Internet]. Ann Transl Med. 2016;4(5):90. http://atm.amegroups.com/article/view/9420/10095.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Heldman DA, Giuffrida JP, Chen R, Payne M, Mazzella F, Duker AP, et al. The modified bradykinesia rating scale for Parkinson’s disease: reliability and comparison with kinematic measures [Internet]. Mov Disord. 2011;26(10):1859–63. http://www.ncbi.nlm.nih.gov/pubmed/21538531.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Mera TO, Heldman DA, Espay AJ, Payne M, Giuffrida JP. Feasibility of home-based automated Parkinson’s disease motor assessment [Internet]. J Neurosci Methods. 2012;203(1):152–6. http://www.ncbi.nlm.nih.gov/pubmed/21978487.

    CrossRef  PubMed  Google Scholar 

  4. Egerton T, Thingstad P, Helbostad JL. Comparison of programs for determining temporal-spatial gait variables from instrumented walkway data: PKmas versus GAITRite [Internet]. BMC Res Notes. 2014;7(1):542. http://www.ncbi.nlm.nih.gov/pubmed/25134621.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Pahwa R, Lyons KE. Early diagnosis of Parkinson’s disease: recommendations from diagnostic clinical guidelines [Internet]. Am J Manag Care. 2010;16(Suppl I):S94–9. http://www.ncbi.nlm.nih.gov/pubmed/20297872.

    PubMed  Google Scholar 

  6. Burke RE, O’Malley K. Axon degeneration in Parkinson’s disease [Internet]. Exp Neurol. 2013;246:72–83. doi:10.1016/j.expneurol.2012.01.011.

    CrossRef  CAS  PubMed  Google Scholar 

  7. Gunn DG, Naismith SL, Lewis SJG. Sleep disturbances in Parkinson disease and their potential role in heterogeneity [Internet]. J Geriatr Psychiatry Neurol. 2010;23(2):131–7. http://www.ncbi.nlm.nih.gov/pubmed/20101072.

    CrossRef  PubMed  Google Scholar 

  8. Lindgren HS, Dunnett SB. Cognitive dysfunction and depression in Parkinson’s disease: what can be learned from rodent models? [Internet]. Eur J Neurosci. 2012;35(12):1894–907. doi:10.1111/j.1460-9568.2012.08162.x.

    CrossRef  PubMed  Google Scholar 

  9. Bonnet AM, Jutras MF, Czernecki V, Corvol JC, Vidailhet M. Nonmotor symptoms in Parkinson’s disease in 2012: relevant clinical aspects [Internet]. Parkinson’s Dis. 2012;2012:198316. doi:10.1155/2012/198316.

    Google Scholar 

  10. Chien S-L, Lin S-Z, Liang C-C, Soong Y-S, Lin S-H, Hsin Y-L, et al. The efficacy of quantitative gait analysis by the GAITRite system in evaluation of parkinsonian bradykinesia [Internet]. Parkinsonism Relat Disord. 2006;12(7):438–42. http://www.ncbi.nlm.nih.gov/pubmed/16798053.

    CrossRef  PubMed  Google Scholar 

  11. Clark EC, Clements BG, Erickson DJ, Maccarty CS, Mulder DW. Therapeutic exercises in management of paralysis agitans [Internet]. J Am Med Assoc. 1956;162(11):1041–3. http://www.ncbi.nlm.nih.gov/pubmed/13366704.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Birkmayer W, Hornykiewicz O. Der L-dioxyphenylalanin (=L-DOPA)-Effekt beim Parkinson-Syndrom des <enschen: zur Pathogenese und Behandlung der Parkinson-Akinese [Internet]. Arch Psychiat Nervenkr. 1962;203(5):560–74. doi:10.1007/BF00343235.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Tomlinson CL, Patel S, Meek C, Clarke CE, Stowe R, Shah L, et al. Physiotherapy versus placebo or no intervention in Parkinson’s disease [Internet]. Cochrane Database Syst Rev. 2012;7(8), CD002817. http://www.ncbi.nlm.nih.gov/pubmed/22786482.

    Google Scholar 

  14. Clarke CE, Patel S, Ives N, Rick CE, Dowling F, Woolley R, et al. Physiotherapy and occupational therapy vs no therapy in mild to moderate Parkinson disease: a randomized clinical trial [Internet]. JAMA Neurol. 2016;73(3):291–9. http://www.ncbi.nlm.nih.gov/pubmed/26785394.

    CrossRef  PubMed  Google Scholar 

  15. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results [Internet]. Mov Disord. 2008;23(15):2129–70. doi:10.1002/mds.22340.

    CrossRef  PubMed  Google Scholar 

  16. Windolf M, Götzen N, Morlock M. Systematic accuracy and precision analysis of video motion capturing systems—exemplified on the Vicon-460 system [Internet]. J Biomech. 2008;41(12):2776–80. http://search.proquest.com/docview/1651859645?accountid=12347\n; http://sfx.scholarsportal.info/mcmaster?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genre=article&sid=ProQ:ProQ:ericshell&atitle=Classroom-Based+Narrative+and+Vocabulary+Inst.

    CrossRef  PubMed  Google Scholar 

  17. Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease [Internet]. Gait Posture. 2014;39(4):1062–8. doi:10.1016/j.gaitpost.2014.01.008.

    CrossRef  PubMed  Google Scholar 

  18. Das S, Trutoiu L, Murai A, Alcindor D, Oh M, De la Torre F, et al. Quantitative measurement of motor symptoms in Parkinson’s disease: a study with full-body motion capture data [Internet]. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6789–92. http://www.ncbi.nlm.nih.gov/pubmed/22255897.

    PubMed  Google Scholar 

  19. Mirek E, Rudzińska M, Szczudlik A. The assessment of gait disorders in patients with Parkinson’s disease using the three-dimensional motion analysis system Vicon [Internet]. Neurol Neurochir Pol. 2007;41(2):128–33. http://www.ncbi.nlm.nih.gov/pubmed/17530574.

    PubMed  Google Scholar 

  20. MocapHouse. Motion capture systems managed by IT backyard [Internet]. Introduction to Vicon F40 Camera; 2010. http://www.mocaphouse.com/”http://www.mocaphouse.com/, http://itbackyard.com/mocaphouse”http://itbackyard.com/mocaphouse

    Google Scholar 

  21. Bilney B, Morris M, Webster K. Concurrent related validity of the GAITRite walkway system for quantification of the spatial and temporal parameters of gait [Internet]. Gait Posture. 2003;17(1):68–74. http://linkinghub.elsevier.com/retrieve/pii/S096663620200053X.

    CrossRef  PubMed  Google Scholar 

  22. Menz HB, Latt MD, Tiedemann A, Mun San Kwan M, Lord SR. Reliability of the GAITRite walkway system for the quantification of temporo-spatial parameters of gait in young and older people [Internet]. Gait Posture. 2004;20(1):20–5. http://www.ncbi.nlm.nih.gov/pubmed/15196515.

    CrossRef  PubMed  Google Scholar 

  23. McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J. The validity and reliability of the GAITRite system’s measurements: a preliminary evaluation [Internet]. Arch Phys Med Rehabil. 2001;82(3):419–25. http://www.ncbi.nlm.nih.gov/pubmed/11245768.

    CrossRef  CAS  PubMed  Google Scholar 

  24. van Uden CJT, Besser MP. Test-retest reliability of temporal and spatial gait characteristics measured with an instrumented walkway system (GAITRite) [Internet]. BMC Musculoskelet Disord. 2004;5(13):13. http://www.ncbi.nlm.nih.gov/pubmed/15147583.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Egerton T, Williams DR, Iansek R. Comparison of gait in progressive supranuclear palsy, Parkinson’s disease and healthy older adults [Internet]. BMC Neurol. 2012;12(1):116. http://www.ncbi.nlm.nih.gov/pubmed/23031506.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Lord S, Galna B, Coleman S, Burn D, Rochester L. Mild depressive symptoms are associated with gait impairment in early Parkinson’s disease [Internet]. Mov Disord. 2013;28(5):634–9. http://www.ncbi.nlm.nih.gov/pubmed/23390120.

    CrossRef  PubMed  Google Scholar 

  27. Verghese J, Holtzer R, Lipton RB, Wang C. Quantitative gait markers and incident fall risk in older adults [Internet]. J Gerontol A Biol Sci Med Sci. 2009;64(8):896–901. doi:10.1093/gerona/glp033.

    CrossRef  PubMed  Google Scholar 

  28. Hass CJ, Malczak P, Nocera J, Stegemöller EL, Shukala A, Malaty I, et al. Quantitative normative Gait data in a large cohort of ambulatory persons with Parkinson’s disease [Internet]. PLoS One. 2012;7(8), e42337. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411737/.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robles-García V, Corral-Bergantiños Y, Espinosa N, Jácome MA, García-Sancho C, Cudeiro J, et al. Spatiotemporal gait patterns during overt and covert evaluation in patients with Parkinson’s disease and healthy subjects: is there a Hawthorne effect? [Internet]. J Appl Biomech. 2015;31(3):189–94.

    CrossRef  PubMed  Google Scholar 

  30. Patel S, Chen BR, Buckley T, Rednic R, McClure D, Tarsy D, et al. Home monitoring of patients with Parkinson’s disease via wearable technology and a web-based application [Internet]. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:4411–14. http://www.ncbi.nlm.nih.gov/pubmed/21096462.

    PubMed  Google Scholar 

  31. Cancela J, Arredondo MT, Hurtado O. Proposal of a Kinect(TM)-based system for gait assessment and rehabilitation in Parkinson’s disease [Internet]. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4519–22. http://www.ncbi.nlm.nih.gov/pubmed/25570996.

    PubMed  Google Scholar 

  32. Wikimedia. Xbox Kinect Sensor [Internet]. 2014. p. Xbox-One-Kinect. https://commons.wikimedia.org/wiki/File:Xbox-One-Kinect.jpg.

  33. Geerse DJ, Coolen BH, Roerdink M. Kinematic validation of a multi-kinect v2 instrumented 10-meter walkway for quantitative gait assessments [Internet]. PLoS One. 2015;10(10), e0139913. http://www.ncbi.nlm.nih.gov/pubmed/26461498.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Dobkin BH. Wearable motion sensors to continuously measure real-world physical activities [Internet]. Curr Opin Neurol. 2013;26(6):602–8. http://ec.europa.eu/public_opinion/archives/ebs/ebs_183_6_en.pdf.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Cuesta-Vargas AI, Galán-Mercant A, Williams JM. The use of inertial sensors system for human motion analysis [Internet]. Phys Ther Rev. 2010;15(6):462–73. doi:10.1179/1743288X11Y.0000000006.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  36. Rahimi F, Duval C, Jog M, Bee C, South A, Jog M, et al. Capturing whole-body mobility of patients with Parkinson disease using inertial motion sensors: expected challenges and rewards [Internet]. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5833–8. http://www.ncbi.nlm.nih.gov/pubmed/22255666.

    PubMed  Google Scholar 

  37. Rahimi F, Bee C, Duval C, Boissy P, Edwards R, Jog M, et al. Using ecological whole body kinematics to evaluate effects of medication adjustment in Parkinson disease [Internet]. J Parkinson’s Dis. 2014;4(4):617–27. http://www.ncbi.nlm.nih.gov/pubmed/25055960.

    Google Scholar 

  38. Tao W, Liu T, Zheng R, Feng H. Gait analysis using wearable sensors [Internet]. Sensors. 2012;12(12):2255–83. http://www.mdpi.com/1424-8220/12/2/2255/.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Chang SY, Lai CF, Chao HCJ, Park JH, Huang YM. An environmental-adaptive fall detection system on mobile device [Internet]. J Med Syst. 2011;35(5):1299–312. http://www.ncbi.nlm.nih.gov/pubmed/21424848.

    CrossRef  PubMed  Google Scholar 

  40. Sant’Anna A, Salarian A, Wickström N. A new measure of movement symmetry in early Parkinson’s disease patients using symbolic processing of inertial sensor data [Internet]. IEEE Trans Biomed Eng. 2011;58(7):2127–35. http://www.ncbi.nlm.nih.gov/pubmed/21536527.

    CrossRef  PubMed  Google Scholar 

  41. Salarian A, Russmann H, Vingerhoets FJG, Burkhard PR, Aminian K. Ambulatory monitoring of physical activities in patients with Parkinson’s disease [Internet]. IEEE Trans Biomed Eng. 2007;54(12):2296–9. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04359998.

    CrossRef  PubMed  Google Scholar 

  42. Ahlskog JE, Uitti RJ. Rasagiline, Parkinson neuroprotection, and delayed-start trials: still no satisfaction? [Internet]. Neurology. 2010;74(14):1143–8. http://www.ncbi.nlm.nih.gov/pubmed/20368634.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  43. Giuffrida JP, Riley DE, Maddux BN, Heldman DA. Clinically deployable KinesiaTM technology for automated tremor assessment [Internet]. Mov Disord. 2009;24(5):723–30. http://resolver.scholarsportal.info/resolve/08853185/v24i0005/723_cdktfata.

    CrossRef  PubMed  Google Scholar 

  44. Heldman DA, Espay AJ, LeWitt PA, Giuffrida JP. Clinician versus machine: reliability and responsiveness of motor endpoints in Parkinson’s disease [Internet]. Parkinsonism Relat Disord. 2014;20(6):590–5. http://www.ncbi.nlm.nih.gov/pubmed/24661464.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Marinus J, van Hilten JJ. The significance of motor (a)symmetry in Parkinson’s disease [Internet]. Mov Disord. 2015;30(3):379–85. http://www.ncbi.nlm.nih.gov/pubmed/25546239.

    CrossRef  PubMed  Google Scholar 

  46. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality [Internet]. Neurology. 1967;17(5):427–42. http://www.ncbi.nlm.nih.gov/pubmed/6067254.

    CrossRef  CAS  PubMed  Google Scholar 

  47. Cutti AG, Giovanardi A, Rocchi L, Davalli A. A simple test to assess the static and dynamic accuracy of an inertial sensors system for human movement analysis [Internet]. Conf Proc IEEE Eng Med Biol Soc. 2006;1:5912–15. http://www.ncbi.nlm.nih.gov/pubmed/17946728.

    PubMed  Google Scholar 

  48. Nguyen HP, Ayachi F, Lavigne-Pelletier C, Blamoutier M, Rahimi F, Boissy P, et al. Auto detection and segmentation of physical activities during a Timed-Up-and-Go (TUG) task in healthy older adults using multiple inertial sensors [Internet]. J Neuroeng Rehabil. 2015;12:36. http://www.ncbi.nlm.nih.gov/pubmed/25885438.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  49. LHSC. LHSC Inside Magazine [Internet]. London, Canada. 2015. p. The Movement Towards Better Treatment of Parkinson. http://inside.lhsc.on.ca/article/summer-2015/movement-towards-better-treatment-parkinsons.

  50. Nijkrake MJ, Keus SHJ, Kalf JG, Sturkenboom IHWM, Munneke M, Kappellea C, et al. Allied health care interventions and complementary therapies in Parkinson’s disease [Internet]. Parkinsonism Relat Disord. 2007;13 Suppl 3:S488–94. http://www.ncbi.nlm.nih.gov/pubmed/18267288.

    CrossRef  PubMed  Google Scholar 

  51. Rubenis J. A rehabilitational approach to the management of Parkinson’s disease [Internet]. Parkinsonism Relat Disord. 2007;13 Suppl 3:S495–7. http://www.ncbi.nlm.nih.gov/pubmed/18267289.

    CrossRef  PubMed  Google Scholar 

  52. Keus SHJ, Munneke M, Nijkrake MJ, Kwakkel G, Bloem BR. Physical therapy in Parkinson’s disease: evolution and future challenges [Internet]. Mov Disord. 2009;24(1):1–14. http://www.ncbi.nlm.nih.gov/pubmed/18946880.

    CrossRef  PubMed  Google Scholar 

  53. Morris ME. Movement disorders in people with Parkinson disease: a model for physical therapy [Internet]. Phys Ther. 2000;80(6):578–97. http://www.ncbi.nlm.nih.gov/pubmed/10842411.

    CAS  PubMed  Google Scholar 

  54. Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback [Internet]. Neuroimage. 2003;19(3):764–76. http://www.ncbi.nlm.nih.gov/pubmed/12880805.

    CrossRef  PubMed  Google Scholar 

  55. Goldberg G. Supplementary motor area structure and function: review and hypotheses [Internet]. Behav Brain Sci. 1985;8(04):567. http://www.journals.cambridge.org/abstract_S0140525X00045167.

    CrossRef  Google Scholar 

  56. Verschueren SM, Swinnen SPP, Dom R, De Weerdt W. Interlimb coordination in patients with Parkinson’s disease: motor learning deficits and the importance of augmented information feedback [Internet]. Exp Brain Res. 1997;113(3):497–508. http://www.ncbi.nlm.nih.gov/pubmed/9108216.

    CrossRef  CAS  PubMed  Google Scholar 

  57. Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE, et al. Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study [Internet]. Brain. 1997;120(Pt 6):963–76. http://www.ncbi.nlm.nih.gov/pubmed/9217681.

    CrossRef  PubMed  Google Scholar 

  58. Hackney ME, Lee HL, Battisto J, Crosson B, McGregor KM. Context-dependent neural activation: internally and externally guided rhythmic lower limb movement in individuals with and without neurodegenerative disease [Internet]. Front Neurol. 2015;6(6):251. doi:10.3389/fneur.2015.00251.

    PubMed  PubMed Central  Google Scholar 

  59. Morris ME. Locomotor training in people with Parkinson disease [Internet]. Phys Ther. 2006;86(10):1426–35. http://www.ncbi.nlm.nih.gov/pubmed/17012646.

    CrossRef  PubMed  Google Scholar 

  60. King LA, Horak FB. Delaying mobility disability in people with Parkinson disease using a sensorimotor agility exercise program [Internet]. Phys Ther. 2009;89(4):384–93. http://www.ncbi.nlm.nih.gov/pubmed/19228832.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  61. Calzetti S, Baratti M, Gresty M, Findley L. Frequency/amplitude characteristics of postural tremor of the hands in a population of patients with bilateral essential tremor: implications for the classification and mechanism of essential tremor [Internet]. J Neurol Neurosurg Psychiatry. 1987;50(5):561–7. http://www.ncbi.nlm.nih.gov/pubmed/3585381.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pathak A, Redmond JA, Allen M, Chou KL. A noninvasive handheld assistive device to accommodate essential tremor: a pilot study [Internet]. Mov Disord. 2014;29(6):838–42. http://www.ncbi.nlm.nih.gov/pubmed/24375570.

    CrossRef  PubMed  Google Scholar 

  63. Parkin S. MIT Technology Review [Internet]. 2016. p. Hope in a Glove for Parkinson’s Patients. https://www.technologyreview.com/s/545456/hope-in-a-glove-for-parkinsons-patients/.

  64. Kozovski A. RateMDs: Doctors Reviews and Ratings [Internet]. 2016. p. This Smart Spoon Aids Parkinson’s Patients in Feed. https://www.ratemds.com/blog/this-smart-spoon-aids-parkinsons-patients-in-feeding-themselves/.

  65. Nonnekes J, Snijders AH, Nutt JG, Deuschl G, Giladi N, Bloem BR. Freezing of gait: a practical approach to management [Internet]. Lancet Neurol. 2015;14(7):768–78. http://www.ncbi.nlm.nih.gov/pubmed/26018593.

    CrossRef  PubMed  Google Scholar 

  66. Giladi N, McMahon D, Przedborski S, Flaster E, Guillory S, Kostic V, et al. Motor blocks in Parkinson’s disease [Internet]. Neurology. 1992;42(2):333–9. http://www.ncbi.nlm.nih.gov/pubmed/1736161.

    CrossRef  CAS  PubMed  Google Scholar 

  67. Azulay JP, Mesure S, Amblard B, Blin O, Sangla I, Pouget J. Visual control of locomotion in Parkinson’s disease [Internet]. Brain. 1999;122(Pt 1):111–20. http://www.ncbi.nlm.nih.gov/pubmed/10050899.

    CrossRef  PubMed  Google Scholar 

  68. Suteerawattananon M, Morris GS, Etnyre BR, Jankovic J, Protas EJ. Effects of visual and auditory cues on gait in individuals with Parkinson’s disease [Internet]. J Neurol Sci. 2004;219(1–2):63–9. http://www.ncbi.nlm.nih.gov/pubmed/15050439.

    CrossRef  CAS  PubMed  Google Scholar 

  69. Jiang Y, Norman KE. Effects of visual and auditory cues on gait initiation in people with Parkinson’s disease [Internet]. Clin Rehabil. 2006;20(1):36–45. http://www.ncbi.nlm.nih.gov/pubmed/16502748.

    CrossRef  PubMed  Google Scholar 

  70. Donovan S, Lim C, Diaz N, Browner N, Rose P, Sudarsky LR, et al. Laserlight cues for gait freezing in Parkinson’s disease: an open-label study [Internet]. Parkinsonism Relat Disord. 2011;17(4):240–5. doi:10.1016/j.parkreldis.2010.08.010.

    CrossRef  CAS  PubMed  Google Scholar 

  71. McCandless PJ, Evans BJ, Janssen J, Selfe J, Churchill A, Richards J. Effect of three cueing devices for people with Parkinson’s disease with gait initiation difficulties [Internet]. Gait Posture. 2016;44:7–11. http://www.sciencedirect.com/science/article/pii/S096663621500942X.

    CrossRef  PubMed  Google Scholar 

  72. dos Santos Mendes FA, Pompeu JE, Modenesi Lobo A, Guedes da Silva K, Oliveira T de P, Peterson Zomignani A, et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson’s disease--effect of motor and cognitive demands of games: a longitudinal, controlled clinical study [Internet]. Physiotherapy. 2012;98(3):217–23. doi:10.1016/j.physio.2012.06.001.

    CrossRef  PubMed  Google Scholar 

  73. Gonçalves GB, Leite MAA, Orsini M, Pereira JS. Effects of using the Nintendo wii fit plus platform in the sensorimotor training of gait disorders in Parkinson’s disease [Internet]. Neurol Int. 2014;6(1):5048. http://www.ncbi.nlm.nih.gov/pubmed/24744845.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  74. Wikimedia. Wii Balance Board [Internet]. 2011. p. Wii Balance Board for Nintendi Wii. https://commons.wikimedia.org/wiki/File:Wii_Balance_Board_transparent.png.

  75. Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease? [Internet]. J Gerontol A Biol Sci Med Sci. 2011;66(2):234–40. http://www.ncbi.nlm.nih.gov/pubmed/21106702.

    CrossRef  PubMed  Google Scholar 

  76. Arias P, Robles-García V, Sanmartín G, Flores J, Cudeiro J. Virtual reality as a tool for evaluation of repetitive rhythmic movements in the elderly and Parkinson’s disease patients [Internet]. PLoS One. 2012;7(1), e30021. http://www.ncbi.nlm.nih.gov/pubmed/22279559.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  77. Garcia A, Andre N, Bell Boucher D, Roberts-South A, Jog M, Katchabaw M. Immersive augmented reality for Parkinson disease rehabilitation. In: Intelligent systems reference library [Internet]. Berlin: Springer; 2014. p. 445–69. http://www.scopus.com/inward/record.url?eid=2-s2.0-84927509975&partnerID=tZOtx3y1.

    Google Scholar 

  78. Wikimedia. Google cardboard VR mount [Internet]. 2014. p. Assembled Google cardboard VRmount. https://commons.wikimedia.org/wiki/File:Assembled_Google_Cardboard_VR_mount.jpg.

  79. DiCarlo, Eleni. Oculus Rift [Internet]. 2014. Flikr. New Oculus Rift Now Available for Developers. https://www.flickr.com/photos/bagogames/13300603614.

  80. Holmes A. Online Press Release Distribution Service [Internet]. Palm Springs. 2010. p. Parkinson’s Gait Dramatically Improves with High Tech Visual Feedback Device. http://ww1.prweb.com/prfiles/2010/04/11/689374/GaitAidsuperimp.jpg.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandar Jog M.D., F.R.C.P.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gilmore, G., Jog, M. (2017). Future Perspectives: Assessment Tools and Rehabilitation in the New Age. In: Chien, H., Barsottini, O. (eds) Movement Disorders Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-319-46062-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46062-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46060-4

  • Online ISBN: 978-3-319-46062-8

  • eBook Packages: MedicineMedicine (R0)