Compact Trip Representation over Networks

  • Nieves R. Brisaboa
  • Antonio Fariña
  • Daniil GalaktionovEmail author
  • M. Andrea Rodríguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9954)


We present a new Compact Trip Representation (\(\mathsf {CTR}\)) that allows us to manage users’ trips (moving objects) over networks. These could be public transportation networks (buses, subway, trains, and so on) where nodes are stations or stops, or road networks where nodes are intersections. \(\mathsf {CTR}\) represents the sequences of nodes and time instants in users’ trips. The spatial component is handled with a data structure based on the well-known Compressed Suffix Array (\(\mathsf {CSA}\)), which provides both a compact representation and interesting indexing capabilities. We also represent the temporal component of the trips, that is, the time instants when users visit nodes in their trips. We create a sequence with these time instants, which are then self-indexed with a balanced Wavelet Matrix (\(\mathsf {WM}\)). This gives us the ability to solve range-interval queries efficiently. We show how \(\mathsf {CTR}\) can solve relevant spatial and spatio-temporal queries over large sets of trajectories. Finally, we also provide experimental results to show the space requirements and query efficiency of \(\mathsf {CTR}\).


Priority Queue Spatial Query Suffix Array Count Operation Starting Stop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Claude, F., Navarro, G., Ordóñez, A.: The wavelet matrix: an efficient wavelet tree for large alphabets. Inf. Syst. 47, 15–32 (2015)CrossRefGoogle Scholar
  2. 2.
    de Almeida, V.T., Güting, R.H.: Indexing the trajectories of moving objects in networks. GeoInformatica 9(1), 33–60 (2005)CrossRefGoogle Scholar
  3. 3.
    Fariña, A., Brisaboa, N., Navarro, G., Claude, F., Places, A., Rodríguez, E.: Word-based self-indexes for natural language text. ACM TOIS 30(1), 1 (2012)CrossRefGoogle Scholar
  4. 4.
    Frentzos, E.: Indexing objects moving on fixed networks. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 289–305. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45072-6_17 CrossRefGoogle Scholar
  5. 5.
    Funke, S., Schirrmeister, R., Skilevic, S., Storandt, S.: Compass-based navigation in street networks. In: Gensel, J., Tomko, M. (eds.) W2GIS 2015. LNCS, vol. 9080, pp. 71–88. Springer, Heidelberg (2015)Google Scholar
  6. 6.
    Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proceeding 14th SODA, pp. 841–850 (2003)Google Scholar
  7. 7.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceeding SIGMOD, pp. 47–57 (1984)Google Scholar
  8. 8.
    Kellaris, G., Pelekis, N., Theodoridis, Y.: Map-matched trajectory compression. J. Syst. Softw. 86(6), 1566–1579 (2013)CrossRefGoogle Scholar
  9. 9.
    Krogh, B., Pelekis, N., Theodoridis, Y., Torp, K.: Path-based queries on trajectory data. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 341–350. ACM (2014)Google Scholar
  10. 10.
    Meratnia, N., Park, Y.-Y.: Spatiotemporal compression techniques for moving point objects. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 765–782. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Munizaga, M.A., Palma, C.: Estimation of a disaggregate multimodal public transport origin-destination matrix from passive smartcard data from santiago, chile. Transp. Res. Part C Emerg. Technol. 24, 9–18 (2012)CrossRefGoogle Scholar
  12. 12.
    Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv. 39(1), 2 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Pelekis, N., Theodoridis, Y.: Mobility Data Management and Exploration. Springer, New York (2014)CrossRefGoogle Scholar
  14. 14.
    Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving object trajectories. In: Proceeding VLDB, pp. 395–406 (2000)Google Scholar
  15. 15.
    Popa, I.S., Zeitouni, K., Oria, V., Barth, D., Vial, S.: Indexing in-network trajectory flows. VLDB J. 20(5), 643–669 (2011)CrossRefGoogle Scholar
  16. 16.
    Potamias, M., Patroumpas, K., Sellis, T.: Sampling trajectory streams with spatiotemporal criteria. In: Proceeding 18th SSDBM, pp. 275–284 (2006)Google Scholar
  17. 17.
    Richter, K., Schmid, F., Laube, P.: Semantic trajectory compression: representing urban movement in a nutshell. J. Spat. Inf. Sci. 4(1), 3–30 (2012)Google Scholar
  18. 18.
    Sadakane, K.: New text indexing functionalities of the compressed suffix arrays. J. Algorithms 48(2), 294–313 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tao, Y., Papadias, D.: MV3R-Tree: a spatio-temporal access method for timestamp and interval queries. In: Proceeding VLDB, pp. 431–440 (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Nieves R. Brisaboa
    • 1
  • Antonio Fariña
    • 1
  • Daniil Galaktionov
    • 1
    Email author
  • M. Andrea Rodríguez
    • 2
  1. 1.Database LaboratoryUniversity of A CoruñaA CoruñaSpain
  2. 2.Department of Computer ScienceUniversity of ConcepciónConcepciónChile

Personalised recommendations