Advertisement

Fully Dynamic de Bruijn Graphs

  • Djamal Belazzougui
  • Travis Gagie
  • Veli Mäkinen
  • Marco Previtali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9954)

Abstract

We present a space- and time-efficient fully dynamic implementation of de Bruijn graphs, which can also support fixed-length jumbled pattern matching.

Keywords

Hash Function Outgoing Edge Bloom Filter Full Version Expected Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Many thanks to Rayan Chikhi and the anonymous reviewers for their comments.

References

  1. 1.
    Amir, A., Chan, T.M., Lewenstein, M., Lewenstein, N.: On hardness of jumbled indexing. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 114–125. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Bankevich, A., et al.: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing: searching a sorted table with o(1) accesses. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 785–794. Society for Industrial and Applied Mathematics (2009)Google Scholar
  4. 4.
    Belazzougui, D., Gagie, T., Mäkinen, V., Previtali, M.: Fully dynamic de bruijn graphs. arXiv preprint (2016). arXiv:1607.04909
  5. 5.
    Belazzougui, D., Gagie, T., Mäkinen, V., Previtali, M., Puglisi, S.J.: Bidirectional variable-order de Bruijn graphs. In: Kranakis, E., et al. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 164–178. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49529-2_13 CrossRefGoogle Scholar
  6. 6.
    Boucher, C., Bowe, A., Gagie, T., Puglisi, S.J., Sadakane, K.: Variable-order de Bruijn graphs. In: Data Compression Conference (DCC), pp. 383–392. IEEE (2015)Google Scholar
  7. 7.
    Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern matching in strings. Int. J. Found. Comput. Sci. 23(02), 357–374 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithm Mol. Biol. 8(22), 1–9 (2012)MathSciNetGoogle Scholar
  10. 10.
    Gagie, T., Hermelin, D., Landau, G.M., Weimann, O.: Binary jumbled pattern matching on trees and tree-like structures. Algorithmica 73(3), 571–588 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM J. Res. Dev. 31(2), 249–260 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern matching with constant-sized alphabet. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 625–636. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Mehlhorn, K.: On the program size of perfect and universal hash functions. In: 23rd Annual Symposium on Foundations of Computer Science, SFCS’08, pp. 170–175. IEEE (1982)Google Scholar
  14. 14.
    Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading Bloom filters to improve the memory usage for de Brujin graphs. In: Darling, A., Stoye, J. (eds.) WABI 2013. LNCS, vol. 8126, pp. 364–376. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Salmela, L., Rivals, E.: Lordec: accurate and efficient long read error correction. Bioinformatics 30(24), 3506–3514 (2014). http://dx.doi.org/10.1093/bioinformatics/btu538 CrossRefGoogle Scholar
  16. 16.
    Sirén, J., Välimäki, N., Mäkinen, V.: Indexing graphs for path queries with applications in genome research. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 11(2), 375–388 (2014)CrossRefGoogle Scholar
  17. 17.
    Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18(5), 821–829 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Djamal Belazzougui
    • 1
  • Travis Gagie
    • 2
    • 3
  • Veli Mäkinen
    • 2
    • 3
  • Marco Previtali
    • 4
  1. 1.CERISTBen AknounAlgeria
  2. 2.Helsinki Institute for Information TechnologyHelsinkiFinland
  3. 3.University of HelsinkiHelsinkiFinland
  4. 4.University of Milano-BicoccaMilanItaly

Personalised recommendations