Skip to main content

Allosteric Modulators: The New Generation of GABAB Receptor Ligands

  • Chapter
  • First Online:
GABAB Receptor

Part of the book series: The Receptors ((REC,volume 29))

Abstract

Allosteric modulators are molecules that interact with a site on a receptor which is distinct from the orthosteric recognition site for the endogenous ligand. By modifying the receptor conformation, they change the affinity and/or efficacy of agonists, but often have no intrinsic activity on their own. Because of this use-dependent mechanism, they are expected to have a much better side-effect profile than agonist drugs. The first positive GABA type B (GABAB) receptor modulators, CGP7930 and GS39783, have been described more than 10 years ago. They were discovered in a high-throughput screen using GTP(γ)35S assays, in which they enhanced both the affinity and the maximal effect of γ-aminobutyric acid (GABA), without having any agonist activity of their own. This positive modulation was subsequently confirmed in a number of different radioligand binding, biochemical and electrophysiological assay systems. The recombinant expression of engineered receptor constructs allowed to locate the site of action of these positive modulators to the seven-transmembrane domain of the GABAB2 subunit, through which they could to some extent directly activate the receptor in sufficiently sensitive assay systems. These early findings have fostered the search for other molecules acting in a similar way, and a number of positive GABAB receptor modulators, and also the first negative modulators, have been described in recent years. In vivo microdialysis experiments have demonstrated at the biochemical level that the mechanism of positive allosteric GABAB receptor modulation also applies in living animals. Behavioural experiments have confirmed that positive GABAB receptor modulators have a better side-effect profile than the therapeutically used agonist drug baclofen. Numerous studies have shown that these compounds show promising activity in animal models for anxiety, drug and alcohol abuse, pain, gastrointestinal indications and possibly more.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amantea, D., Tessari, M., & Bowery, N. G. (2004). Reduced G-protein coupling to the GABAB receptor in the nucleus accumbens and the medial prefrontal cortex of the rat after chronic treatment with nicotine. Neuroscience Letters, 355, 161–164.

    Article  CAS  PubMed  Google Scholar 

  • Binet, V., Brajon, C., Le Corre, L., Acher, F., Pin, J. P., & Prézeau, L. (2004). The heptahelical domain of GABAB2 is activated directly by CGP7930, a positive allosteric modulator of the GABAB receptor. Journal of Biological Chemistry, 279, 29085–29091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowery, N. G. (Ed.). (2006). Allosteric receptor modulation in drug targeting. London: Taylor & Francis.

    Google Scholar 

  • Brown, K. M., Roy, K. K., Hockerman, G. H., Doerksen, R. J., & Colby, D. A. (2015). Activation of the γ-aminobutyric acid type B (GABAB) receptor by agonists and positive allosteric modulators. Journal of Medicinal Chemistry, 58, 6336–6347.

    Article  CAS  PubMed  Google Scholar 

  • Brusberg, M., Ravnefjord, A., Martinsson, R., Larsson, H., Martinez, V., & Lindström, E. (2009). The GABAB receptor agonist, baclofen, and the positive allosteric modulator, CGP7930, inhibit visceral pain-related responses to colorectal distension in rats. Neuropharmacology, 56, 362–367.

    Article  CAS  PubMed  Google Scholar 

  • Carai, M. A. M., Colombo, G., Froestl, W., & Gessa, G. L. (2004). In vivo effectiveness of CGP7930, a positive allosteric modulator of the GABAB receptor. European Journal of Pharmacology, 504, 213–216.

    Article  CAS  PubMed  Google Scholar 

  • Castelli, M. P., Casu, A., Casti, P., Lobina, C., Carai, M. A. M., Colombo, G., et al. (2012). Characterization of COR627 and COR628, two novel positive allosteric modulators of the GABAB receptor. Journal of Pharmacology and Experimental Therapeutics, 340, 529–538.

    Article  CAS  PubMed  Google Scholar 

  • Changeux, J. P. (2013). The concept of allosteric interaction and its consequences for the chemistry of the brain. Journal of Biological Chemistry, 288, 26969–26986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L. H., Sun, B., Zhang, Y., Xu, T. J., Xia, Z. X., Liu, J. F., et al. (2014). Discovery of a negative allosteric modulator of GABAB receptors. ACS Medicinal Chemistry Letters, 5, 742–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Menendez-Roche, N., & Sher, E. (2006). Differential modulation by the GABAB receptor allosteric potentiator 2,6-di-tert-butyl-4-(3-hydroxy-2,2dimethylpropyl)-phenol (CGP7930) of synaptic transmission in the rat hippocampal CA1 area. Journal of Pharmacology and Experimental Therapeutics, 317, 1170–1177.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Phillips, K., Minton, G., & Sher, E. (2005). GABAB receptor modulators potentiate baclofen-induced depression of dopamine neuron activity in the rat ventral tegmental area. British Journal of Pharmacology, 144, 926–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christopoulos, A. (2014). Advances in G protein-coupled receptor allostery: From function to structure. Molecular Pharmacology, 86, 463–478.

    Article  PubMed  Google Scholar 

  • Christopoulos, A., & Kenakin, T. (2002). G protein-coupled receptor allosterism and complexing. Pharmacological Reviews, 54, 323–374.

    Article  CAS  PubMed  Google Scholar 

  • Conn, P. J., Christopoulos, A., & Lindsley, C. W. (2009). Allosteric modulators of GPCRs: A novel approach for the treatment of CNS disorders. Nature Reviews Drug Discovery, 8, 41–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cryan, J. F., Kelly, P. H., Chaperon, F., Gentsch, C., Mombereau, C., Lingenhoehl, K., et al. (2004). Behavioral characterization of the novel GABAB receptor-positive modulator GS39783 (N,N-dicyclopentyl-2methylsulfanyl-5-nitro-pyrimidine-4,6-diamine): Anxiolytic-like activity without side effects associated with baclofen or benzodiazepines. Journal of Pharmacology and Experimental Therapeutics, 310, 952–963.

    Article  CAS  PubMed  Google Scholar 

  • Dupuis, D. S., Relkovic, D., Lhuillier, L., Mosbacher, J., & Kaupmann, K. (2006). Point mutations in the transmembrane region of GABAB2 facilitate activation by the positive modulator N,N-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6diamine (GS39783) in the absence of the GABAB1 subunit. Molecular Pharmacology, 70, 2027–2036.

    Article  CAS  PubMed  Google Scholar 

  • Filip, M., & Frankowska, M. (2008). GABAB receptors in drug addiction. Pharmacological Reports, 60, 755–770.

    Google Scholar 

  • Filip, M., Frankowska, M., Sadakierska-Chudy, A., Suder, A., Szumiec, L., Mierzejewski, P., et al. (2015). GABAB receptors as a therapeutic strategy in substance use disorders: Focus on positive allosteric modulators. Neuropharmacology, 88, 36–47.

    Google Scholar 

  • Froestl, W. (2010). Novel GABAB receptor positive modulators: A patent survey. Expert Opinion on Therapeutic Patents, 20, 1007–1017.

    Article  CAS  PubMed  Google Scholar 

  • Gjoni, T., Desrayaud, S., Imobersteg, S., & Urwyler, S. (2006). The positive allosteric modulator GS39783 enhances GABAB receptor-mediated inhibition of cyclic AMP formation in rat striatum in vivo. Journal of Neurochemistry, 96, 1416–1422.

    Article  CAS  PubMed  Google Scholar 

  • Gjoni, T., & Urwyler, S. (2008). Receptor activation involving positive allosteric modulation, unlike full agonism, does not result in GABAB receptor desensitization. Neuropharmacology, 55, 1293–1299.

    Article  CAS  PubMed  Google Scholar 

  • Gjoni, T., & Urwyler, S. (2009). Changes in the properties of allosteric and orthosteric GABAB receptor ligands after a continuous, desensitizing agonist pretreatment. European Journal of Pharmacology, 603, 37–41.

    Article  CAS  PubMed  Google Scholar 

  • Guery, S., Floersheim, P., Kaupmann, K., & Froestl, W. (2007). Syntheses and optimization of new GS39783 analogues as positive allosteric modulators of GABAB receptors. Bioorganic and Medicinal Chemistry Letters, 17, 6206–6211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, D. A. (2000). Modeling the functional effects of allosteric modulators at pharmacological receptors: An extension of the two-state model of receptor activation. Molecular Pharmacology, 58, 1412–1423.

    CAS  PubMed  Google Scholar 

  • Hwa, L. S., Kalinichev, M., Haddouk, H., Poli, S., & Miczek, K. A. (2014). Reduction of excessive alcohol drinking by a novel GABAB receptor positive allosteric modulator ADX71441 in mice. Psychopharmacology, 231, 333–343.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson, L. H., & Cryan, J. F. (2008). Evaluation of the anxiolytic-like profile of the GABAB receptor positive modulator CGP7930 in rodents. Neuropharmacology, 54, 854–862.

    Article  CAS  PubMed  Google Scholar 

  • Kalinichev, M., Donovan-Rodriguez, T., Girard, F., Riguet, E., Rouillier, M., Bournique, B., et al. (2014a). Evaluation of peripheral versus central effects of GABAB receptor activation using a novel, positive allosteric modulator of the GABAB receptor ADX71943, a pharmacological tool compound with a fully peripheral activity profile. British Journal of Pharmacology, 171, 4941–4954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinichev, M., Palea, S., Haddouk, H., Royer-Urios, I., Guilloteau, V., Lluel, P., et al. (2014b). ADX71441, a novel, potent and selective positive allosteric modulator of the GABAB receptor, shows efficacy in rodent models of overactive bladder. British Journal of Pharmacology, 171, 995–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr, D. I., Khalafy, J., Ong, J., Perkins, M. V., Prager, R. H., Puspawati, N. M., et al. (2006). Synthesis and biological activity of allosteric modulators of GABAB receptors, part 2. 3-(2,6-Bis-tert-butyl-4-hydroxyphenyl)propanols. Australian Journal of Chemistry, 59, 457–462.

    Article  CAS  Google Scholar 

  • Kerr, D. I., Khalafy, J., Ong, J., Prager, R. H., & Rimaz, M. (2007). Synthesis and biological activity of allosteric modulators of GABAB receptors part 3. 3-(2,6-Bis-iso-propyl-4-hydroxyphenyl)propanols. Journal of the Brazilian Chemical Society, 18, 721–727.

    Article  CAS  Google Scholar 

  • Kerr, D. I., & Ong, J. (2003). Potentiation of metabotropic GABAB receptors by L-aminoacids and dipeptides in rat neocortex. European Journal of Pharmacology, 468, 103–108.

    Article  CAS  PubMed  Google Scholar 

  • Kerr, D. I., Ong, J., Puspawati, N. M., & Prager, R. H. (2002). Arylalkylamines are a novel class of positive allosteric modulators at GABAB receptors in rat neocortex. European Journal of Pharmacology, 51, 69–77.

    Article  Google Scholar 

  • Koek, W., Cheng, K., & Rice, K. C. (2013). Discriminative stimulus effects of the GABAB receptor-positive modulator rac-BHFF: Comparison with GABAB receptor agonists and drugs of abuse. Journal of Pharmacology and Experimental Therapeutics, 344, 553–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koek, W., France, C. P., Cheng, K., & Rice, K. C. (2010). GABAB receptor-positive modulators: Enhancement of GABAB receptor agonist effects in vivo. Journal of Pharmacology and Experimental Therapeutics, 335, 163–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koek, W., France, C. P., Cheng, K., & Rice, K. C. (2012). Effects of the GABAB receptor-positive modulators CGP7930 and rac-BHFF in baclofen- and γ-hydroxybutyrate-discriminating pigeons. Journal of Pharmacology and Experimental Therapeutics, 341, 369–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lhuillier, L., Mombereau, C., Cryan, J. F., & Kaupmann, K. (2007). GABAB receptor positive modulation decreases selective molecular and behavioral effects of cocaine. Neuropsychopharmacology, 32, 388–398.

    Article  CAS  PubMed  Google Scholar 

  • Malherbe, P., Masciadri, R., Norcross, R. D., Knoflach, F., Kratzeisen, C., Zenner, M. T., et al. (2008). Characterization of (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one as a positive allosteric modulator of GABAB receptors. British Journal of Pharmacology, 154, 797–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannoury la Cour, C., Herbelles, C., Pasteau, V., de Nanteuil, G., & Millan, M. J. (2008). Influence of positive allosteric modulators on GABAB receptor coupling in rat brain: A scintillation proximity assay characterisation of G protein subtypes. Journal of Neurochemistry, 105, 308–323.

    Google Scholar 

  • Masharina, A., Reymond, L., Maurel, D., Umezawa, K., & Johnsson, K. (2012). A fluorescent sensor for GABA and synthetic GABAB receptor ligands. Journal of the American Chemical Society, 134, 19026–19034.

    Article  CAS  PubMed  Google Scholar 

  • Matsushita, S., Nakata, H., Kubo, Y., & Tateyama, M. (2010). Ligand-induced rearrangements of the GABAB receptor revealed by fluorescence resonance energy transfer. Journal of Biological Chemistry, 285, 10291–10299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mombereau, C., Lhuillier, L., Kaupmann, K., & Cryan, J. F. (2007). GABAB receptor positive modulation-induced blockade of the rewarding properties of nicotine is associated with a reduction in nucleus accumbens ΔFosB accumulation. Journal of Pharmacology and Experimental Therapeutics, 321, 172–177.

    Google Scholar 

  • Monod, J., Wyman, J., & Changeux, J. P. (1965). On the nature of allosteric transition. Journal of Molecular Biology, 12, 88–118.

    Article  CAS  PubMed  Google Scholar 

  • Mugnaini, C., Pedani, V., Casu, A., Lobina, C., Casti, A., Maccioni, P., et al. (2013). Synthesis and pharmacological characterization of 2-(acylamino)-thiophene derivatives as metabolically stable, orally effective, positive allosteric modulators of the GABAB receptor. Journal of Medicinal Chemistry, 56, 3620–3635.

    Article  CAS  PubMed  Google Scholar 

  • Olianas, M. C., Ambu, R., Garau, L., & Onali, P. (2005). Allosteric modulation of GABAB receptor function in human frontal cortex. Neurochemistry International, 46, 149–158.

    Article  CAS  PubMed  Google Scholar 

  • Onali, P., Mascia, F. M., & Olianas, M. C. (2003). Positive regulation of GABAB receptors dually coupled to cyclic AMP by the allosteric agent CGP7930. European Journal of Pharmacology, 471, 77–84.

    Article  CAS  PubMed  Google Scholar 

  • Perdonà, E., Costantini, V. J. A., Tessari, M., Martinelli, P., Carignani, C., Valerio, E., et al. (2011). In vitro and in vivo characterization of the novel GABAB receptor positive allosteric modulator, 2-{1-[2-(4-chlorophenyl)-5-methylpyrazolo[1,5-a]pyrimidin-7-yl]-2-piperidinyl}ethanol (CMPPE). Neuropharmacology, 61, 957–966.

    Article  PubMed  Google Scholar 

  • Pin, J. P., & Prézeau, L. (2007). Allosteric modulators of GABAB receptors: Mechanism of action and therapeutic perspective. Current Neuropharmacology, 5, 195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu, H., Rondard, P., Xu, C., Bertaso, F., Cao, F., Zhang, X., et al. (2007). Dominant role of GABAB2 and Gβγ for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. Cellular Signalling, 19, 1996–2002.

    Article  CAS  PubMed  Google Scholar 

  • Tu, H., Xu, C., Zhang, W., Liu, Q., Rondard, P., Pin, J. P., et al. (2010). GABAB receptor activation protects neurons from apoptosis via IGF-1 receptor transactivation. Journal of Neuroscience, 30, 749–759.

    Article  CAS  PubMed  Google Scholar 

  • Urwyler, S. (2011). Allosteric modulation of family C G-protein-coupled receptors: From molecular insights to therapeutic perspectives. Pharmacological Reviews, 63, 59–126.

    Article  CAS  PubMed  Google Scholar 

  • Urwyler, S., Gjoni, T., Kaupmann, K., Pozza, M. F., & Mosbacher, J. (2004). Selected amino acids, dipeptides and arylalkylamine derivatives do not act as allosteric modulators at GABAB receptors. European Journal of Pharmacology, 483, 147–153.

    Article  CAS  PubMed  Google Scholar 

  • Urwyler, S., Gjoni, T., Koljatić, J., & Dupuis, D. S. (2005). Mechanisms of allosteric modulation at GABAB receptors by CGP7930 and GS39783: Effects on affinities and efficacies of orthosteric ligands with distinct intrinsic properties. Neuropharmacology, 48, 343–353.

    Article  CAS  PubMed  Google Scholar 

  • Urwyler, S., Mosbacher, J., Lingenhoehl, K., Heid, J., Hofstetter, K., Froestl, W., et al. (2001). Positive allosteric modulation of native and recombinant γ-aminobutyric acidB receptors by 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Molecular Pharmacology, 60, 963–971.

    CAS  PubMed  Google Scholar 

  • Urwyler, S., Pozza, M. F., Lingenhoehl, K., Mosbacher, J., Lampert, C., Froestl, W., et al. (2003). N,N′Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: Novel allosteric enhancers of γ-aminobutyric acidB receptor function. Journal of Pharmacology and Experimental Therapeutics, 307, 322–330.

    Article  CAS  PubMed  Google Scholar 

  • Vacher, C. M., & Bettler, B. (2003). GABAB receptors as potential therapeutic targets. Current Drug Targets: CNS & Neurological Disorders, 2, 248–259.

    CAS  Google Scholar 

  • Xi, Z. X., Ramamoorthy, S., Shen, H., Lake, R., Samuvel, D. J., & Kalivas, P. W. (2003). GABA transmission in the nucleus accumbens is altered after withdrawal from repeated cocaine. Journal of Neuroscience, 23, 3498–3505.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Urwyler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Urwyler, S. (2016). Allosteric Modulators: The New Generation of GABAB Receptor Ligands. In: Colombo, G. (eds) GABAB Receptor. The Receptors, vol 29. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46044-4_18

Download citation

Publish with us

Policies and ethics