Skip to main content

Targeting the GABAB Receptor for the Treatment of Epilepsy

  • Chapter
  • First Online:
GABAB Receptor

Part of the book series: The Receptors ((REC,volume 29))

Abstract

Epilepsy is a disorder of neural networks that is characterized by spontaneous recurrent seizures. The role of GABAB receptor-mediated mechanisms in the pathogenesis of seizures depends upon neural networks involved, which determine the seizure type. Generalized seizures involve diffuse, bi-hemispheric neuronal networks, while focal seizures involve regional brain networks. GABAB receptor agonists have been shown to diminish seizure activity in mouse models of both generalized convulsive and focal seizures. However, generalized non-convulsive seizures such as typical and atypical absence seizures (AASs) characteristically are exacerbated by GABAB receptor agonists and blocked by GABAB receptor antagonists. The reason for this dichotomy is the involvement of thalamic circuitry in both typical and atypical absence seizures. Thalamocortical circuitry underpins typical absence seizures (TASs) and hippocampal-thalamocortical circuitry is involved in AASs. In addition, high doses of GABAB receptor agonists active at the GABAB receptor/G-protein coupled inwardly rectifying potassium 2 (GIRK2) channel recently have been shown to induce the phenotype of a specific catastrophic epilepsy syndrome of childhood, infantile spasms, in mice. Therefore, GABAB receptor-mediated mechanisms can be pro- or anti-convulsant depending on the nature of the pathological neuronal networks involved. Although there are pre-clinical data in support of the efficacy of GABAB receptor agonists and antagonists in specific experimental models of seizures, these data have not been translated into the clinical arena because of the potential for downstream adverse effects. The therapeutic goal for the use of these compounds in epilepsy awaits a strategy that targets only those GABAB receptor for specific networks that are involved in a given pathological state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexopoulos, H., Dagklis, I. E., Akrivou, S., Bostantjopoulou, S., & Dalakas, M. C. (2014). Autoimmune encephalitis with GABAB antibodies, thymoma, and GABAB receptor thymic expression. Neurology: Neuroimmunology & Neuroinflammation, 1(4), e39.

    Google Scholar 

  • Bare, M. A., Burnstine, T. H., Fisher, R. S., & Lesser, R. P. (1994). Electroencephalographic changes during simple partial seizures. Epilepsia, 35(4), 715–720.

    Article  CAS  PubMed  Google Scholar 

  • Beenhakker, M. P., & Huguenard, J. R. (2009). Neurons that fire together also conspire together: Is normal sleep circuitry hijacked to generate epilepsy? Neuron, 62(5), 612–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belichenko, N. P., Belichenko, P. V., Kleschevnikov, A. M., Salehi, A., Reeves, R. H., & Mobley, W. C. (2009). The “Down syndrome critical region” is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. Journal of Neuroscience, 29(18), 5938–5948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benke, D. (2013). GABAB receptor trafficking and interacting proteins: Targets for the development of highly specific therapeutic strategies to treat neurological disorders? Biochemical Pharmacology, 86(11), 1525–1530.

    Article  CAS  PubMed  Google Scholar 

  • Berg, A. T., Berkovic, S. F., Brodie, M. J., Buchhalter, J., Cross, J. H., Van Emde Boas, W., et al. (2010). Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology 2005-2009. Epilepsia, 51(4), 676–685.

    Article  PubMed  Google Scholar 

  • Best, T. K., Siarey, R. J., & Galdzicki, Z. (2007). Ts65Dn, a mouse model of Down syndrome, exhibits increased GABAB-induced potassium current. Journal of Neurophysiology, 97(1), 892–900.

    Article  CAS  PubMed  Google Scholar 

  • Bilgic, B., Baykan, B., Gurses, C., & Gokyigit, A. (2001). Perioral myoclonia with absence seizures: A rare epileptic syndrome. Epileptic Disorders, 3(1), 23–27.

    CAS  PubMed  Google Scholar 

  • Billinton, A., Baird, V. H., Thom, M., Duncan, J. S., Upton, N., & Bowery, N. G. (2001). GABAB receptor autoradiography in hippocampal sclerosis associated with human temporal lobe epilepsy. British Journal of Pharmacology, 132(2), 475–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blichowski, M., Shephard, A., Armstrong, J., Shen, L., Cortez, M. A., Eubanks, J. H., et al. (2015). The GIRK2 subunit is involved in ISs-like seizures induced by GABAB receptor agonists. Epilepsia, 56(7), 1081–1087.

    Article  CAS  PubMed  Google Scholar 

  • Blumenfeld, H. (2005). Consciousness and epilepsy: Why are patients with absence seizures absent? Progress in Brain Research, 150, 271–286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradley, W. G. (Ed.). (2012). Bradley’s neurology in clinical practice (6th ed.). Philadelphia, PA: Elsevier/Saunders. Chapter 67.

    Google Scholar 

  • Callaghan, N., O’Hare, J., O’Driscoll, D., O’Neill, B., & Daly, M. (1982). Comparative study of ethosuximide and sodium valproate in the treatment of typical absence seizures (petit mal). Developmental Medicine and Child Neurology, 24(6), 830–836.

    CAS  PubMed  Google Scholar 

  • Carmant, L. (2002). Infantile spasms: West syndrome. Archives of Neurology, 59(2), 317–318.

    Article  PubMed  Google Scholar 

  • Chan, K. F., Burnham, W. M., Jia, Z., Cortez, M. A., & Snead, O. C., 3rd. (2006). GABAB receptor antagonism abolishes the learning impairments in rats with chronic atypical absence seizures. European Journal of Pharmacology, 541(1–2), 64–72.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., Chan, Y. S., & Yung, W. H. (2004). GABA-B receptor activation in the rat globus pallidus potently suppresses pentylenetetrazol-induced tonic seizures. Journal of Biomedical Science, 11(4), 457–464.

    Article  CAS  PubMed  Google Scholar 

  • Chiang, S., & Haneef, Z. (2014). Graph theory findings in the pathophysiology of temporal lobe epilepsy. Clinical Neurophysiology, 125(7), 1295–1305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Connelly, W. M., Fyson, S., Errington, A. C., McCafferty, C. P., Cope, D. W., Di Giovanni, G., et al. (2013). GABAB receptors regulate extrasynaptic GABAA receptors. Journal of Neuroscience, 33(9), 3780–3785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cope, D. W., Di Giovanni, G., Fyson, S. J., Orban, G., Errington, A. C., Lorincz, M. L., et al. (2009). Enhanced tonic GABAA inhibition in typical absence epilepsy. Nature Medicine, 15(12), 1392–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortez, M. A., McKerlie, C., & Snead, O. C., III. (2001). A model of atypical absence seizures: EEG, pharmacology, and developmental characterization. Neurology, 56(3), 341–349.

    Article  CAS  PubMed  Google Scholar 

  • Cortez, M. A., Shen, L., Wu, Y., Aleem, I. S., Trepanier, C. H., Sadeghnia, H. R., et al. (2009). Infantile spasms and Down syndrome: A new animal model. Pediatric Research, 65(5), 499–503.

    Article  PubMed  Google Scholar 

  • Crunelli, V., & Leresche, N. (2002). Childhood absence epilepsy: Genes, channels, neurons, and networks. Nature Reviews Neuroscience, 3(5), 371–382.

    Article  CAS  PubMed  Google Scholar 

  • Davisson, M. T., Schmidt, C., & Akeson, E. C. (1990). Segmental trisomy of murine chromosome 16: A new system for studying Down syndrome. In D. Patteron & C. J. Epstein (Eds.), Molecular genetics of chromosome 21 and Down syndrome (pp. 263–280). New York: Wiley-Liss.

    Google Scholar 

  • Dhir, A. (2012). Pentylenetetrazol (PTZ) kindling model of epilepsy. Current Protocols in Neuroscience, 9(37), 1–9.

    Google Scholar 

  • Dugladze, T., Maziashvili, N., Börgers, C., Gurgenidze, S., Haussler, U., Winkelmann, A., et al. (2013). GABA(B) autoreceptor-mediated cell type-specific reduction of inhibition in epileptic mice. Proceedings of the National Academy of Sciences of the United States of America, 110(37), 15073–15078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel, J. (2013). Chapter 9: Periictal phenomena. In Seizures and epilepsy (pp. 320–341). New York, NY: Oxford University Press.

    Google Scholar 

  • French, J. (2003). A gene polymorphism associated with temporal lobe epilepsy? Epilepsy Currents, 3(4), 123–124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glauser, T. A., Cnaan, A., Shinnar, S., Hirtz, D. G., Dlugos, D., Masur, D., et al. (2013). Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy: Initial monotherapy outcomes at 12 months. Epilepsia, 54(1), 141–155.

    Article  CAS  PubMed  Google Scholar 

  • Go, C. Y., Mackay, M. T., Weiss, S. K., Stephens, D., Adams-Webber, T., Ashwal, S., et al. (2012). Evidence based guideline update: Medical treatment of infantile spasms. Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology, 78(24), 1974–1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamer, H. M., Lüders, H. O., Knake, S., Fritsch, B., Oertel, W. H., & Rosenow, F. (2003). Electrophysiology of focal clonic seizures in humans: A study using subdural and depth electrodes. Brain, 126(Pt 3), 547–555.

    Article  CAS  PubMed  Google Scholar 

  • Han, H. A., Cortez, M. A., & Snead, O. C., III. (2012). GABAB receptor and absence epilepsy. In J. L. Noebels, M. Avoli, M. A. Rogawski, R. W. Olsen, & A. V. Delgado-Escueta (Eds.), Jasper’s basic mechanisms of the epilepsies [Internet] (4th ed., pp. 242–256). Bethesda, MD: National Center for Biotechnology Information (US).

    Google Scholar 

  • Höftberger, R., Titulaer, M. J., Sabater, L., Dome, B., Rozsas, A., Hegedus, B., et al. (2013). Encephalitis and GABAB receptor antibodies: Novel findings in a new case series of 20 patients. Neurology, 81(17), 1500–1506.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huguenard, J. R., & Prince, D. A. (1994). Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. Journal of Neurophysiology, 71(6), 2576–2581.

    CAS  PubMed  Google Scholar 

  • Huo, J. Z., Cortez, M. A., & Snead, O. C. (2009). GABA receptor proteins within lipid rafts in the AY-9944 model of atypical absence seizures. Epilepsia, 50(4), 776–788.

    Article  CAS  PubMed  Google Scholar 

  • Intusoma, U., Abbott, D. F., Masterton, R. A., Stagnitti, M. R., Newton, M. R., Jackson, G. D., et al. (2013). Tonic seizures of Lennox-Gastaut syndrome: Periictal single-photon emission computed tomography suggests a corticopontine network. Epilepsia, 54(12), 2151–2157.

    Article  PubMed  Google Scholar 

  • Jagirdar, R., Drexel, M., Kirchmair, E., Tasan, R. O., & Sperk, G. (2015). Rapid changes in expression of class I and IV histone deacetylases during epileptogenesis in mouse models of temporal lobe epilepsy. Experimental Neurology, 273, 92–104.

    Article  CAS  PubMed  Google Scholar 

  • Karameh, F. N., & Massaquoi, S. G. (2009). Intracortical augmenting responses in networks of reduced compartmental models of tufted layer 5 cells. Journal of Neurophysiology, 101(1), 207–233.

    Article  PubMed  Google Scholar 

  • Karlsson, G., Klebs, K., Hafner, T., Schmutz, M., & Olpe, H. R. (1992). Blockade of GABAB receptors accelerates amygdala kindling development. Experientia, 48(8), 748–751.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, D. M. (2007). Epilepsy. In D. M. Kaufman (Ed.), Clinical neurology for psychiatrists (pp. 203–240). Philadelphia, PA: Saunders Elsevier.

    Google Scholar 

  • Kelly, K. M., Valeriano, J. P., & Solot, J. A. (1999). Chapter 12: Seizures. In S. M. Shah & K. M. Kelly (Eds.), Emergency neurology: Principles and practice (pp. 154–172). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Kenyon, K., Mintzer, S., & Nei, M. (2014). Carbamazepine treatment of generalized tonic-clonic seizures in idiopathic generalized epilepsy. Seizure, 23(3), 234–236.

    Article  PubMed  Google Scholar 

  • Khosravani, H., & Zamponi, G. W. (2006). Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiological Reviews, 86(3), 941–966.

    Article  CAS  PubMed  Google Scholar 

  • Klioueva, I. A., van Luijtelaar, E. L., Chepurnova, N. E., & Chepurnov, S. A. (2001). PTZ-induced seizures in rats: Effects of age and strain. Physiology & Behavior, 72(3), 421–426.

    Article  CAS  Google Scholar 

  • Kruer, M. C., Hoeftberger, R., Lim, K. Y., Coryell, J. C., Svoboda, M. D., Woltjer, R. L., et al. (2014). Aggressive course in encephalitis with opsoclonus, ataxia, chorea, and seizures: The first pediatric case of GABA(B) receptor autoimmunity. JAMA Neurology, 71(5), 620–623.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang, M., Moradi-Chameh, H., Zahid, T., Gane, J., Wu, C., et al. (2014). Regulating hippocampal hyperexcitability through GABAB receptors. Physiological Reports, 2(4), e00278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lason, W., Chlebicka, M., & Rejdak, K. (2013). Research advances in basic mechanisms of seizures and antiepileptic drug action. Pharmacological Reports, 65(4), 787–801.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. J., Kang, H. C., Seo, J. H., Lee, J. S., & Kim, H. D. (2010). Efficacy and tolerability of adjunctive therapy with zonisamide in childhood intractable epilepsy. Brain and Development, 32(3), 208–212.

    Article  PubMed  Google Scholar 

  • Lévesque, M., & Avoli, M. (2013). The kainic acid model of temporal lobe epilepsy. Neuroscience & Biobehavioral Reviews, 37, 2887–2899.

    Article  Google Scholar 

  • Libenson, M. H. (2010). Chapter 10: The EEG in epilepsy. In M. H. Libenson (Ed.), Practical approach to electroencephalography. Philadelphia, PA: Saunders Elsevier.

    Google Scholar 

  • Liu, Z. L., Ma, H., Xu, R. X., Dai, Y. W., Zhang, H. T., Yao, X. Q., et al. (2012). Potassium channels underlie postsynaptic but not presynaptic GABAB receptor-mediated inhibition on ventrolateral periaqueductal gray neurons. Brain Research Bulletin, 88(5), 529–533.

    Article  CAS  PubMed  Google Scholar 

  • Lott, I. T. (2012). Neurological phenotypes for Down syndrome across the life span. Progress in Brain Research, 197, 101–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson, R. H., Cramer, J. A., & Collins, J. F. (1992). A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults. The Department of Veterans Affairs Epilepsy Cooperative Study No. 264 Group. New England Journal of Medicine, 327(11), 765–771.

    Article  CAS  PubMed  Google Scholar 

  • Modebadze, T., Morgan, N. H., Pérès, I. A., Hadid, R. D., Amada, N., Hill, C., et al. (2016). A low mortality, high morbidity reduced intensity status epilepticus (RISE) model of epilepsy and epileptogenesis in the rat. PLoS One, 11(2), e0147265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Motohashi, N., Ikawa, K., & Kariya, T. (1989). GABAB receptors are up-regulated by chronic treatment with lithium or carbamazepine. GABA hypothesis of affective disorders? European Journal of Pharmacology, 166(1), 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Nishida, N., Huang, Z. L., Mikuni, N., Miura, Y., Urade, Y., & Hashimoto, N. (2007). Deep brain stimulation of the posterior hypothalamus activates the histaminergic system to exert antiepileptic effect in rat pentylenetetrazol model. Experimental Neurology, 205(1), 132–144.

    Article  CAS  PubMed  Google Scholar 

  • Nolan, M., Bergazar, M., Chu, B., Cortez, M. A., & Snead, O. C., 3rd. (2005). Clinical and neurophysiologic spectrum associated with atypical absence seizures in children with intractable epilepsy. Journal of Child Neurology, 20(5), 404–410.

    Article  PubMed  Google Scholar 

  • Onat, F. Y., van Luijtelaar, G., Nehllig, A., & Snead, O. C. (2013). The involvement of limbic structures in typical and atypical absence epilepsy. Epilepsy Research, 103(2–3), 111–123.

    Article  PubMed  Google Scholar 

  • Pacey, L. K., Heximer, S. P., & Hampson, D. R. (2009). Increased GABA(B) receptor-mediated signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures. Molecular Pharmacology, 76(1), 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Panayiotopoulos, C. P. (2005). Chapter 10: Idiopathic generalized epilepsies. In C. P. Panayiotopoulos (Ed.), The epilepsies: Seizures, syndromes and management. Bladon Medical: Oxfordshire, UK.

    Google Scholar 

  • Perez-Reyes, E. (2003). Molecular physiology of low voltage activated T-type calcium channels. Physiological Reviews, 83(1), 117–161.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Velazquez, J. L., Huo, J. Z., Garcia Dominguez, L. G., Leshchenko, Y., & Snead, O. C., III. (2007). Typical versus atypical absence seizures: Network mechanisms of the spread of paroxysms. Epilepsia, 48(8), 1585–1593.

    Article  Google Scholar 

  • Pitkanen, A., & Lukasiuk, K. (2011). Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurology, 10(2), 173–186.

    Article  PubMed  Google Scholar 

  • Raimondo, J. V., Burman, R. J., Katz, A. A., & Akerman, C. J. (2015). Ion dynamics during seizures. Frontiers in Cellular Neuroscience, 9, 419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richardson, M. P. (2012). Large scale models of epilepsy: Dynamics meets connectomics. Journal of Neurology, Neurosurgery & Psychiatry, 83(12), 1238–1248.

    Article  Google Scholar 

  • Sander, T., Peters, C., Kämmer, G., Samochowiec, J., Zirra, M., Mischke, D., et al. (1999). Association analysis of exonic variants of the gene encoding the GABAB receptor and idiopathic generalized epilepsy. American Journal of Medical Genetics, 88(4), 305–310.

    Article  CAS  PubMed  Google Scholar 

  • Schuler, V., Lüscher, C., Blanchet, C., Klix, N., Sansig, G., Klebs, K., et al. (2001). Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron, 31(1), 47–58.

    Article  CAS  PubMed  Google Scholar 

  • Seeck, M., Schomer, D. L., & Niedermeyer, E. (2005). Chapter 33: Intracranial monitoring, depth, subdural, and foramen ovale electrodes. In E. Niedermeyer & F. L. De Silva (Eds.), Electroencephalography: Basic principles, clinical applications and related fields (5th ed., pp. 677–714). Baltimore, MD: Lippincott, Williams and Wilkins.

    Google Scholar 

  • Smith, S. J. (2005). EEG in the diagnosis, classification, and management of patients with epilepsy. Journal of Neurology, Neurosurgery & Psychiatry, 76(Suppl 2), ii2–ii7.

    Google Scholar 

  • Snead, O. C. (2002). γ-Hydroxybutyrate and absence seizure activity. In G. Tunnicliff & C. D. Cash (Eds.), Gamma-hydroxybutyrate: Molecular, functional, and clinical aspects (pp. 132–149). New York: Taylor Francis.

    Chapter  Google Scholar 

  • Snead, O. C., Banerjee, P. K., Burnham, M., & Hampson, D. (2000). Modulation of absence seizures by the GABA(A) receptor: A critical role for metabotropic glutamate receptor (mGLUR4). Journal of Neuroscience, 20(16), 6218–6224.

    CAS  PubMed  Google Scholar 

  • Snead, O. C., Cortez, M. A., Francis, J., & Eubanks, J. (2000). GABAB receptor gene expression is altered in an animal model of atypical absence epilepsy. Epilepsia, 41(Suppl 7), 23.

    Google Scholar 

  • Snead, O. C., Depaulis, A., Vergnes, M., & Marescaux, C. (1999). Absence epilepsy: Advances in experimental animal models. Advances in Neurology, 79, 253–278.

    PubMed  Google Scholar 

  • Snead, O. C., 3rd, & Hosey, L. C. (1985). Exacerbation of seizures in children by carbamazepine. New England Journal of Medicine, 313(15), 916–921.

    Article  PubMed  Google Scholar 

  • Spencer, S. S. (2002). Neural networks in human epilepsy: Evidence of and implications for treatment. Epilepsia, 43(3), 219–227.

    Article  PubMed  Google Scholar 

  • Squires, R. F., Saederup, E., Crawley, J. N., Skolnick, P., & Paul, S. M. (1984). Convulsant potencies of tetrazoles are highly correlated with actions on GABA/benzodiazepine/picrotoxin receptor complexes in brain. Life Sciences, 35(14), 1439–1444.

    Article  CAS  PubMed  Google Scholar 

  • Steriade, M. (2005). Sleep, epilepsy, and thalamic reticular inhibitory neurons. Trends in Neurosciences, 28(6), 317–324.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, L. S., Wu, Y., Eubanks, J. H., Han, H., Leschenko, Y., Perez Velazquez, J. L., et al. (2009). Severity of atypical absence phenotype in GABAB transgenic mice is subunit specific. Epilepsy & Behavior, 14(4), 577–581.

    Article  Google Scholar 

  • Velísková, J., Velísek, L., & Moshé, S. L. (1996). Age-specific effects of baclofen on pentylenetetrazol-induced seizures in developing rats. Epilepsia, 37(8), 718–722.

    Article  PubMed  Google Scholar 

  • Vergnes, M., Boehrer, A., Simler, S., Bernasconi, R., & Morescaux, C. (1997). Opposite effects of GABAB receptor antagonists on absences and convulsive seizures. European Journal of Pharmacology, 332(3), 245–255.

    Article  CAS  PubMed  Google Scholar 

  • Verrotti, A., Cusmai, R., Nicita, F., Pizzolorusso, A., Elia, M., Zamponi, N., et al. (2013). Electroclinical features and long term outcome of cryptogenic epilepsy children with Down syndrome. Journal of Pediatrics, 163(6), 1754–1758.

    Article  PubMed  Google Scholar 

  • Wang, X., Stewart, L., Cortez, M. A., Wu, Y., Velazquez, J. L., Liu, C. C., et al. (2009). The circuitry of atypical absence seizures in GABA(B)R1a transgenic mice. Pharmacology, Biochemistry and Behavior, 94(1), 124–130.

    Article  CAS  PubMed  Google Scholar 

  • Widjaja, E., Go, C., McCoy, B., & Snead, O. C., 3rd. (2015). Neurodevelopmental outcome of infantile spasms: A systematic review and meta-analysis. Epilepsy Research, 109, 155–162.

    Article  PubMed  Google Scholar 

  • Wu, Y., Chan, K. F., Eubanks, J. H., Guin Ting Wong, C., Cortez, M. A., Shen, L., et al. (2007). Transgenic mice over-expressing GABA(B)R1a receptors acquire an atypical absence epilepsy-like phenotype. Neurobiology of Disease, 26(2), 439–451.

    Article  CAS  PubMed  Google Scholar 

  • Wurpel, J. N., Sperber, E. F., & Moshé, S. L. (1990). Baclofen inhibits amygdala kindling in immature rats. Epilepsy Research, 5(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Carter Snead .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Joshi, K., Cortez, M.A., Snead, O.C. (2016). Targeting the GABAB Receptor for the Treatment of Epilepsy. In: Colombo, G. (eds) GABAB Receptor. The Receptors, vol 29. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46044-4_10

Download citation

Publish with us

Policies and ethics