Skip to main content

Introduction

  • Chapter
  • First Online:
Nonlinear Model Predictive Control

Part of the book series: Communications and Control Engineering ((CCE))

  • 7243 Accesses

Abstract

In this introduction, we present the basics of NMPC in an informal way. In particular, we introduce the central idea of iterative optimal control on a moving finite horizon. We provide a brief history of NMPC and MPC, explain the organization of the material in this book, and mention some topics which are not covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The meaning of “admissible” will be defined in Sect. 3.2.

  2. 2.

    Attentive readers may already have noticed that this description is mathematically idealized since we neglected the computation time needed to solve the optimization problem. In practice, when the measurement x(n) is provided to the optimizer the feedback value \(\mu (x(n))\) will only be available after some delay. For simplicity of exposition, throughout our theoretical investigations we will assume that this delay is negligible. We will come back to this problem in Sect. 10.6.

References

  1. Alamir, M., Bornard, G.: Stability of a truncated infinite constrained receding horizon scheme: the general discrete nonlinear case. Automatica 31(9), 1353–1356 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957). Reprinted in 2010

    MATH  Google Scholar 

  3. Bitmead, R.R., Gevers, M., Wertz, V.: Adaptive Optimal Control: The Thinking Man’s GPC. International Series in Systems and Control Engineering. Prentice-Hall, New York (1990)

    MATH  Google Scholar 

  4. Chen, C.C., Shaw, L.: On receding horizon feedback control. Automatica 18(3), 349–352 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, H., Allgöwer, F.: Nonlinear model predictive control schemes with guaranteed stability. In: Berber, R., Kravaris, C. (eds.) Nonlinear Model Based Process Control, pp. 465–494. Kluwer Academic, Dodrecht (1999)

    Google Scholar 

  6. Cutler, C.R., Ramaker, B.L.: Dynamic matrix control – a computer control algorithm. In: Proceedings of the Joint Automatic Control Conference, pp. 13–15 (1980)

    Google Scholar 

  7. De Nicolao, G., Magni, L., Scattolini, R.: Stabilizing nonlinear receding horizon control via a nonquadratic terminal state penalty. In: CESA’96 IMACS Multiconference: Computational Engineering in Systems Applications, Lille, France, pp. 185–187 (1996)

    Google Scholar 

  8. De Nicolao, G., Magni, L., Scattolini, R.: Stabilizing receding-horizon control of nonlinear time-varying systems. IEEE Trans. Automat. Control 43(7), 1030–1036 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Del Re, L., Allgöwer, F., Glielmo, L., Guardiola, C., Kolmanovsky, I. (eds.): Automotive Model Predictive Control – Models, Methods and Applications. Lecture Notes in Control and Information Sciences. Springer, Berlin (2010)

    MATH  Google Scholar 

  10. Fontes, F.A.C.C.: A general framework to design stabilizing nonlinear model predictive controllers. Syst. Control Lett. 42(2), 127–143 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. García, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and practice - a survey. Automatica 25(3), 335–348 (1989)

    Article  MATH  Google Scholar 

  12. Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Model predictive control: for want of a local control Lyapunov function, all is not lost. IEEE Trans. Automat. Control 50(5), 546–558 (2005)

    Article  MathSciNet  Google Scholar 

  13. Jadbabaie, A., Hauser, J.: On the stability of receding horizon control with a general terminal cost. IEEE Trans. Automat. Control 50(5), 674–678 (2005)

    Article  MathSciNet  Google Scholar 

  14. Keerthi, S.S., Gilbert, E.G.: Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon approximations. J. Optim. Theory Appl. 57(2), 265–293 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. Wiley, New York (1967)

    MATH  Google Scholar 

  16. Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, New York (2002)

    MATH  Google Scholar 

  17. Magni, L., Sepulchre, R.: Stability margins of nonlinear receding-horizon control via inverse optimality. Syst. Control Lett. 32(4), 241–245 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mayne, D.Q., Michalska, H.: Receding horizon control of nonlinear systems. IEEE Trans. Automat. Control 35(7), 814–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Parisini, T., Zoppoli, R.: A receding-horizon regulator for nonlinear systems and a neural approximation. Automatica 31(10), 1443–1451 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Translated by D. E. Brown. Pergamon/Macmillan, New York (1964)

    Google Scholar 

  22. Propoĭ, A.I.: Application of linear programming methods for the synthesis of automatic sampled-data systems. Avtom. Telemeh. 24, 912–920 (1963)

    MathSciNet  Google Scholar 

  23. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11, 733–764 (2003)

    Article  Google Scholar 

  24. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison (2009)

    Google Scholar 

  25. Richalet, J., Rault, A., Testud, J.L., Papon, J.: Model predictive heuristic control: applications to industrial processes. Automatica 14, 413–428 (1978)

    Article  Google Scholar 

  26. Schittkowski, K.: Numerical Data Fitting in Dynamical Systems. Applied Optimization, vol. 77. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Grüne .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grüne, L., Pannek, J. (2017). Introduction. In: Nonlinear Model Predictive Control. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-46024-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46024-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46023-9

  • Online ISBN: 978-3-319-46024-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics