An Empirically Informed Taxonomy for the Maker Movement

  • Christian Voigt
  • Calkin Suero Montero
  • Massimo Menichinelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9934)

Abstract

The Maker Movement emerged from a renewed interest in the physical side of innovation following the dot-com bubble and the rise of the participatory Web 2.0 and the decreasing costs of many digital fabrication technologies. Classifying concepts, i.e. building taxonomies, is a fundamental practice when developing a topic of interest into a research field. Taking advantage of the growth of the Social Web and participation platforms, this paper suggests a multidisciplinary analysis of communications and online behaviors related to the Maker community in order to develop a taxonomy informed by current practices and ongoing discussions. We analyze a number of sources such as Twitter, Wikipedia and Google Trends, applying co-word analysis, trend visualizations and emotional analysis. Whereas co-words and trends extract structural characteristics of the movement, emotional analysis is non-topical, extracting emotional interpretations.

Keywords

Maker movement Internet science Taxonomy Development Co-word analysis Clustering Emotion profiling 

References

  1. 1.
    The Blueprint Talks with Dale Dougherty. https://theblueprint.com/stories/dale-dougherty
  2. 2.
    Gershenfeld, N.: How to make almost anything: the digital fabrication revolution. Foreign Aff. 91, 43 (2012)Google Scholar
  3. 3.
    Gershenfeld, N.: Fab: the coming revolution on your desktop–from personal computers to personal fabrication. Basic Books (2008)Google Scholar
  4. 4.
    Etsy’s total annual merchandise sales volume from 2005 to 2015. http://www.statista.com/statistics/219412/etsys-total-merchandise-sales-per-year
  5. 5.
    Dini, P., Iqani, M., Mansell, R.: The (im) possibility of interdisciplinarity: lessons from constructing a theoretical framework for digital ecosystems. Culture Theory Critique 52, 3–27 (2011)CrossRefGoogle Scholar
  6. 6.
    Fiedler, K.D., Grover, V., Teng, J.T.: An empirically derived taxonomy of information technology structure and its relationship to organizational structure. J. Manage. Inf. Syst. 13, 9–34 (1996)CrossRefGoogle Scholar
  7. 7.
    Bailey, K.D.: Typologies and taxonomies: an introduction to classification techniques. Sage (1994)Google Scholar
  8. 8.
    Stewart, K.J., Gosain, S.: The impact of ideology on effectiveness in open source software development teams. MIS Q. 30, 291–314 (2006)Google Scholar
  9. 9.
    Baichtal, J.: Hack this: 24 incredible hackerspace projects from the DIY movement. New Riders (2011)Google Scholar
  10. 10.
    Rich, P.: The organizational taxonomy: definition and design. Acad. Manag. Rev. 17, 758–781 (1992)Google Scholar
  11. 11.
    Horan, T., Lafky, D.: Toward an empirical user taxonomy for personal health records systems. In: AMCIS 2006 Proceedings, p. 341 (2006)Google Scholar
  12. 12.
    Menichinelli, M.: Mapping the structure of the global maker laboratories community through Twitter connections. In: Levallois, C., Marchand, M., Mata, T., Panisson, A. (eds.) Twitter for Research Handbook 2015–2016, pp. 47–62. EMLYON Press, Lyon (2016)Google Scholar
  13. 13.
    Ratto, M.: Critical making: Conceptual and material studies in technology and social life. Inf. Soc. 27, 252–260 (2011)CrossRefGoogle Scholar
  14. 14.
    Anderson, C.: Makers: the New Industrial Revolution. Crown Business, New York (2012)Google Scholar
  15. 15.
    Dougherty, D.: The maker movement. innovations. 7, 11–14 (2012)Google Scholar
  16. 16.
    Trant, J.: Studying social tagging and folksonomy: a review and framework. J. Digital Inf. 10 (2009)Google Scholar
  17. 17.
    Carmody, T.: Big DIY: The Year the Maker Movement Broke. Wired, 6 August 2011. http://www.wired.com/20
  18. 18.
    Eisenberg, M.: Educational fabrication, in and out of the classroom. In: Society for Information Technology & Teacher Education International Conference (2011)Google Scholar
  19. 19.
    Bull, G., Haj-Hariri, H., Atkins, R., Moran, P.: An educational framework for digital manufacturing in schools. 3D Printing Additive Manuf. 2, 42–49 (2015)CrossRefGoogle Scholar
  20. 20.
    Scopus (bibliographic database). www.scopus.com
  21. 21.
  22. 22.
    Meho, L.I., Yang, K.: Impact of data sources on citation counts and rankings of LIS faculty: Web of Science versus Scopus and Google Scholar. J. Am. Soc. Inform. Sci. Technol. 58, 2105–2125 (2007)CrossRefGoogle Scholar
  23. 23.
    Small, H., Sweeney, E.: Clustering the science citation index® using co-citations: I. A comparison methods. Scientometrics 7, 391–409 (1985)CrossRefGoogle Scholar
  24. 24.
    Leydesdroff, L.: Words and co-words as indicators of intellectual organization. Res. Policy 18, 209–223 (1989)CrossRefGoogle Scholar
  25. 25.
    Callon, M., Courtial, J.-P., Turner, W.A., Bauin, S.: From translations to problematic networks: An introduction to co-word analysis. Soc. Sci. Inf. 22, 191–235 (1983)CrossRefGoogle Scholar
  26. 26.
    The Comprehensive R Archive Network. https://cran.r-project.org
  27. 27.
  28. 28.
  29. 29.
  30. 30.
    3,100 teachers, administrators gather to promote STEM education. http://edsource.org/2015/3100-teachers-administrators-gather-to-promote-stem-education/89840
  31. 31.
    American Association of School Librarians. http://national.aasl.org
  32. 32.
    Mattel is Using 3D Printing to Resurrect an Old Hit. http://fortune.com/2016/02/12/mattel-3d-printing-toys
  33. 33.
    Adafruits Industries. https://www.adafruit.com/
  34. 34.
  35. 35.
    Package “gtrendsR.”Google Scholar
  36. 36.
  37. 37.
    Technology: Print me a Stradivarius. http://www.economist.com/node/18114327
  38. 38.
    Bougie, R., Pieters, R., Zeelenberg, M.: Angry customers don’t come back, they get back: the experience and behavioral implications of anger and dissatisfaction in services. J. Acad. Mark. Sci. 31, 377–393 (2003)CrossRefGoogle Scholar
  39. 39.
    Ortony, A., Clore, G.L., Foss, M.A.: The referential structure of the affective lexicon. Cogn. Science. 11, 341–364 (1987)CrossRefGoogle Scholar
  40. 40.
    Kakkonen, T., Kakkonen, G.G.: SentiProfiler: creating comparable visual profiles of sentimental content in texts. In: Language Technologies for Digital Humanities and Cultural Heritage, vol. 62 (2011)Google Scholar
  41. 41.
    Suero Montero, C., Munezero, M., Kakkonen, T.: Investigating the role of emotion-based features in author gender classification of text. In: Gelbukh, A. (ed.) CICLing 2014, Part II. LNCS, vol. 8404, pp. 98–114. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  42. 42.
    Strapparava, C., Valitutti, A.: WordNet affect: an affective extension of WordNet. In: LREC. pp. 1083–1086 (2004)Google Scholar
  43. 43.
    Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31, 651–666 (2010)CrossRefGoogle Scholar
  44. 44.
    Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: Conversational aspects of retweeting on twitter. In: System Sciences (HICSS), 2010 43rd Hawaii International Conference on. pp. 1–10. IEEE (2010)Google Scholar
  45. 45.
    Fischer, G.: Understanding, fostering, and supporting cultures of participation. Interactions 18, 42–53 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Christian Voigt
    • 1
  • Calkin Suero Montero
    • 2
  • Massimo Menichinelli
    • 3
    • 4
  1. 1.Zentrum Für Soziale Innovation, Technology and KnowledgeViennaAustria
  2. 2.University of Eastern FinlandJoensuuFinland
  3. 3.IAAC | Fab Lab BarcelonaBarcelonaSpain
  4. 4.School of Art, Design and Architecture Media Lab HelsinkiAalto UniversityHelsinkiFinland

Personalised recommendations