Skip to main content

Combining Syntactic and Acoustic Features for Prosodic Boundary Detection in Russian

  • Conference paper
  • First Online:
Statistical Language and Speech Processing (SLSP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9918))

Included in the following conference series:

Abstract

This paper presents a two-step method of automatic prosodic boundary detection using both textual and acoustic features. Firstly, we predict possible boundary positions using textual features; secondly, we detect the actual boundaries at the predicted positions using acoustic features. For evaluation of the algorithms we use a 26-h subcorpus of CORPRES, a prosodically annotated corpus of Russian read speech. We have also conducted two independent experiments using acoustic features and textual features separately. Acoustic features alone enable to achieve the F\(_1\) measure of 0.85, precision of 0.94, recall of 0.78. Textual features alone work with the F\(_1\) measure of 0.84, precision of 0.84, recall of 0.83. The proposed two-step approach combining the two groups of features yields the efficiency of 0.90, recall of 0.85 and precision of 0.99. It preserves the high recall provided by textual information and the high precision achieved using acoustic information. This is the best published result for Russian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Texts A, B and C comprise 75 % of all the recordings.

  2. 2.

    We use the term “prosodic word” in its traditional sense for a content word and its clitics, which lose their lexical stress and form one rhythmic unit with the adjacent stressed word.

References

  1. Bachenko, J., Fitzpatrick, E.: A computational grammar of discourse-neutral prosodic phrasing in English. Comput. Linguist. 16(3), 155–170 (1990)

    Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Busser, B., Daelemans, W., van den Bosch, A.: Predicting phrase breaks with memory-based learning. In: Proceedings of the 4th ISCA Tutorial and Research Workshop on Speech Synthesis, pp. 29–34 (2001)

    Google Scholar 

  4. Chafe, W.: Punctuation and the prosody of written language. Writ. Commun. 5(4), 395–426 (1988)

    Article  Google Scholar 

  5. Hirschberg, J., Rambow, O.: Learning prosodic features using a tree representation. In: Proceedings of Eurospeech 2001, pp. 1175–1178 (2001)

    Google Scholar 

  6. Hoffmann, S.: A data-driven model for the generation of prosody from syntactic sentence structures. Ph.D. thesis, ETH-Zürich, Zürich (2014)

    Google Scholar 

  7. Jeon, J.H., Liu, Y.: Semi-supervised learning for automatic prosodic event detection using co-training algorithm. In: ACL 2009, Stroudsburg, PA, USA, vol. 2, pp. 540–548. Association for Computational Linguistics (2009)

    Google Scholar 

  8. Kachkovskaia, T.: The influence of boundary depth on phrase-final lengthening in Russian. In: Dediu, A.-H., et al. (eds.) SLSP 2015. LNCS, vol. 9449, pp. 135–142. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25789-1_13

    Chapter  Google Scholar 

  9. Khomitsevich, O., Chistikov, P., Zakharov, D.: Using random forests for prosodic break prediction based on automatic speech labeling. In: Ronzhin, A., Potapova, R., Delic, V. (eds.) SPECOM 2014. LNCS, vol. 8773, pp. 467–474. Springer, Heidelberg (2014)

    Google Scholar 

  10. Koziev, E.: Solarix (2016). http://www.solarix.ru

  11. Liu, Y., Shriberg, E., Stolcke, A., Hillard, D., Ostendorf, M., Harper, M.: Enriching speech recognition with automatic detection of sentence boundaries and disfluencies. IEEE Trans. Audio Speech Lang. Process. 14(5), 1526–1540 (2006)

    Article  Google Scholar 

  12. Lobanov, B.: An algorithm of the text segmentation on syntactic syntagrams for TTS synthesis. In: Proceedings of Dialogue 2008 (2008)

    Google Scholar 

  13. McCallum, A.K.: MALLET: a machine learning for language toolkit (2002). http://mallet.cs.umass.edu

  14. Ostendorf, M., Veilleux, N.: A hierarchical stochastic model for automatic prediction of prosodic boundary location. Comput. Linguist. 20(1), 27–54 (1994)

    Google Scholar 

  15. Read, I., Cox, S.: Using part-of-speech tags for predicting phrase breaks. In: Proceedings of Interspeech 2004, Jeju Island, Korea, pp. 741–744, October 2004

    Google Scholar 

  16. Read, I., Cox, S.: Stochastic and syntactic techniques for predicting phrase breaks. Comput. Speech Lang. 21(3), 519–542 (2007)

    Article  Google Scholar 

  17. Segal, N., Bartkova, K.: Prosodic structure representation for boundary detection in spontaneous French. In: Proceedings of ICPhS 2007, pp. 1197–1200 (2007)

    Google Scholar 

  18. Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proceedings of NAACL 2003, pp. 134–141 (2003)

    Google Scholar 

  19. Skrelin, P., Volskaya, N., Kocharov, D., Evgrafova, K., Glotova, O., Evdokimova, V.: CORPRES - corpus of Russian professionally read speech. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2010. LNCS, vol. 6231, pp. 392–399. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Streeter, L.A.: Acoustic determinants of phrase boundary perception. J. Acoust. Soc. Am. 64(6), 1582–1592 (1978)

    Article  Google Scholar 

  21. Taylor, P., Black, A.W.: Assigning phrase breaks from part-of-speech sequences. Comput. Speech Lang. 12(2), 99–117 (1998)

    Article  Google Scholar 

  22. Tepperman, J., Nava, E.: Where hould pitch accents and phrase breaks go? A syntax tree transducer solution. In: Proceedings of Interspeech 2011, pp. 1353–1356 (2011)

    Google Scholar 

  23. Vaissire, J.: Language-independent prosodic features. In: Cutler, A., Ladd, D.R. (eds.) Prosody: Models and Measurements. Springer Series in Language and Communication, vol. 14, pp. 53–66. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

  24. Volskaya, N.: Prosodic features of Russian spontaneous and read aloud speech. In: de Silva, V., Ullakonoja, R. (eds.) Phonetics of Russian and Finnish, pp. 133–144. Peter Lang, Bern (2009)

    Google Scholar 

  25. Wightman, C.W., Ostendorf, M.: Automatic recognition of prosodic phrases. In: Proceedings of ICASSP 1991, vol. 1, pp. 321–324 (1991)

    Google Scholar 

  26. Yoon, T., Cole, J., Hasegawa-Johnson, M.: On the edge: acoustic cues to layered prosodic domains. In: Proceedings of ICPhS 2007, Saarbrcken, Germany, pp. 1264–1267 (2007)

    Google Scholar 

Download references

Acknowledgments

The research is supported by the Russian Science Foundation (research grant # 14-18-01352).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Kachkovskaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kocharov, D., Kachkovskaia, T., Mirzagitova, A., Skrelin, P. (2016). Combining Syntactic and Acoustic Features for Prosodic Boundary Detection in Russian. In: Král, P., Martín-Vide, C. (eds) Statistical Language and Speech Processing. SLSP 2016. Lecture Notes in Computer Science(), vol 9918. Springer, Cham. https://doi.org/10.1007/978-3-319-45925-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45925-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45924-0

  • Online ISBN: 978-3-319-45925-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics