Skip to main content

What Is Entropy—A Generalized Outlook and Application to Living Systems

  • Chapter
  • First Online:
Thermal Physics and Thermal Analysis

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 11))

Abstract

Thermodynamics of open systems offers a new concept for description of real material objects including the living systems. The second law of thermodynamics can be interpreted as an evolution law of all material systems, which are in interaction with surroundings. The most important quantity is entropy, which is defined by balance of entropy. The production of entropy gives information about the processes in the systems. The convexity of entropy informs about the stability of the system states. Under the appropriate outer conditions, the fluctuations can force the systems to instability. Consequence is the creation or decay of new dissipative structures. When the new dissipative structure appears, the system is going out of the thermodynamic equilibrium to the new stable state. However, if the dissipative structure disappears, the systems will tend to the thermodynamic equilibrium. From the biological point of view, the thermodynamic equilibrium equals to death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Truesdell C (1984) Rational thermodynamics. Springer, New York

    Book  Google Scholar 

  2. Eringen AC (1975) Continuum physics, Vol. II: continuum mechanics of single-substance bodies. Academic Press, New York

    Google Scholar 

  3. de Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, Amsterdam

    Google Scholar 

  4. Glansdorff P, Prigogine I (1971) Thermodynamic theory of structure, stability and fluctuations. Wiley-Interscience, New York

    Google Scholar 

  5. Jou D, Casas-Vázquez J, Lebon G (2010) Extended irreversible thermodynamics, 4th edn. Springer, Berlin

    Book  Google Scholar 

  6. Woods LC (1975) The thermodynamics of fluid systems. Bristol, Oxford

    Google Scholar 

  7. Dawkins R (2006) The selfish gene, 3rd edn. Oxford, Oxford

    Google Scholar 

  8. Jorgensen SE, Svirezhev YM (2004) Towards a thermodynamic theory for ecological systems. Elsevier Ltd., Amsterdam

    Google Scholar 

  9. Atkins P (2010) The laws of thermodynamics: a very short introduction. Oxford, New York

    Google Scholar 

  10. Landau LD, Lifshitz EM (1980) Statistical physics. Pergamon Press, Oxford

    Google Scholar 

  11. Callen HB (1985) Thermodynamics and an introduction to thermostatistics. Wiley, Singapore

    Google Scholar 

  12. Prigogine I (1980) From being to becoming. W. H. Freeman and Company, San Francisco

    Google Scholar 

  13. Eddington AS (1929) The nature of the physical world. The Maxmillan Company, New York

    Google Scholar 

  14. Clausius R (1854) Über eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie. Annalen der Physik und Chemie 93(12):481–506

    Article  Google Scholar 

  15. Gibbs JW (1884) On the fundamental formula of statistical mechanics, with applications to astronomy and thermodynamics. In: Proceedings of the American Association for the Advancement of Science, vol 33, pp 57–58. Reproduced in The Scientific Papers of J. Willard Gibbs, Vol II, pp 16 (1906)

    Google Scholar 

  16. Boltzmann L (1974) Theoretical physics and philosophical problem (trans: Brush SG). Reidel, Boston (Original work published 1886)

    Google Scholar 

  17. Einstein A (1909) Zum gegenwärtigen Stand des Strahlungsproblems. Physikalische Zeitschrift 10:185–193

    Google Scholar 

  18. Onsager L (1931) Reciprocal relations in irreversible processes I. Phys Rev 37:405–426

    Article  CAS  Google Scholar 

  19. Onsager L (1931) Reciprocal relations in irreversible processes II. Phys Rev 38:2265–2279

    Article  CAS  Google Scholar 

  20. Schrödinger E (1967) What is life. Cambridge Press, Cambridge

    Google Scholar 

  21. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  CAS  Google Scholar 

  22. Voet D, Voet JG (1995) Biochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  23. Kjelstrup S, Bedeaux D (2008) Non-equilibrium thermodynamics of heterogeneous systems. World Scientific Publishing, Singapore

    Book  Google Scholar 

  24. Pavelka M, Maršík F, Klika V (2014) Consistent theory of mixtures on different levels of description. Int J Eng Sci 78:192–217

    Article  Google Scholar 

  25. Atkins P, de Paula J (2006) Physical chemistry, 8th edn. Oxford University Press, Oxford

    Google Scholar 

  26. De Heer J (1957) The principle of Le Châtelier and Braun. J Chem Educ 34(8):375–380

    Article  Google Scholar 

  27. Kazuhisa M (1997) Renewable biological systems for alternative sustainable energy production [online]. Food and Agriculture Organization of the United Nations (seen 14 Jan 2016). Available at: http://www.fao.org/docrep/w7241e/w7241e06.htm

  28. Key World Energy Statistics (2015) [online] The International Energy Agency (seen 18 Jan 18 2016). Available at: http://www.iea.org/publications/freepublications/publication/KeyWorld_Statistics_2015.pdf

  29. World population prospects (2016) [online] United Nations, Department of Economic and Social Affairs, Population Division (seen 20 Jan 2016). Available at: http://esa.un.org/unpd/wpp/

  30. Henry CJK (2005) Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutrition 8(7A):1133–1152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Maršík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maršík, F., Novotný, P., Tomáš, M. (2017). What Is Entropy—A Generalized Outlook and Application to Living Systems. In: Šesták, J., Hubík, P., Mareš, J. (eds) Thermal Physics and Thermal Analysis. Hot Topics in Thermal Analysis and Calorimetry, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-45899-1_4

Download citation

Publish with us

Policies and ethics