What Is Entropy—A Generalized Outlook and Application to Living Systems

  • F. MaršíkEmail author
  • P. Novotný
  • M. Tomáš
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 11)


Thermodynamics of open systems offers a new concept for description of real material objects including the living systems. The second law of thermodynamics can be interpreted as an evolution law of all material systems, which are in interaction with surroundings. The most important quantity is entropy, which is defined by balance of entropy. The production of entropy gives information about the processes in the systems. The convexity of entropy informs about the stability of the system states. Under the appropriate outer conditions, the fluctuations can force the systems to instability. Consequence is the creation or decay of new dissipative structures. When the new dissipative structure appears, the system is going out of the thermodynamic equilibrium to the new stable state. However, if the dissipative structure disappears, the systems will tend to the thermodynamic equilibrium. From the biological point of view, the thermodynamic equilibrium equals to death.


Entropy Production Material Point Total Entropy Macroscopic Variable Local Equilibrium State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Truesdell C (1984) Rational thermodynamics. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Eringen AC (1975) Continuum physics, Vol. II: continuum mechanics of single-substance bodies. Academic Press, New YorkGoogle Scholar
  3. 3.
    de Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, AmsterdamGoogle Scholar
  4. 4.
    Glansdorff P, Prigogine I (1971) Thermodynamic theory of structure, stability and fluctuations. Wiley-Interscience, New YorkGoogle Scholar
  5. 5.
    Jou D, Casas-Vázquez J, Lebon G (2010) Extended irreversible thermodynamics, 4th edn. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Woods LC (1975) The thermodynamics of fluid systems. Bristol, OxfordGoogle Scholar
  7. 7.
    Dawkins R (2006) The selfish gene, 3rd edn. Oxford, OxfordGoogle Scholar
  8. 8.
    Jorgensen SE, Svirezhev YM (2004) Towards a thermodynamic theory for ecological systems. Elsevier Ltd., AmsterdamGoogle Scholar
  9. 9.
    Atkins P (2010) The laws of thermodynamics: a very short introduction. Oxford, New YorkGoogle Scholar
  10. 10.
    Landau LD, Lifshitz EM (1980) Statistical physics. Pergamon Press, OxfordGoogle Scholar
  11. 11.
    Callen HB (1985) Thermodynamics and an introduction to thermostatistics. Wiley, SingaporeGoogle Scholar
  12. 12.
    Prigogine I (1980) From being to becoming. W. H. Freeman and Company, San FranciscoGoogle Scholar
  13. 13.
    Eddington AS (1929) The nature of the physical world. The Maxmillan Company, New YorkGoogle Scholar
  14. 14.
    Clausius R (1854) Über eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie. Annalen der Physik und Chemie 93(12):481–506CrossRefGoogle Scholar
  15. 15.
    Gibbs JW (1884) On the fundamental formula of statistical mechanics, with applications to astronomy and thermodynamics. In: Proceedings of the American Association for the Advancement of Science, vol 33, pp 57–58. Reproduced in The Scientific Papers of J. Willard Gibbs, Vol II, pp 16 (1906)Google Scholar
  16. 16.
    Boltzmann L (1974) Theoretical physics and philosophical problem (trans: Brush SG). Reidel, Boston (Original work published 1886)Google Scholar
  17. 17.
    Einstein A (1909) Zum gegenwärtigen Stand des Strahlungsproblems. Physikalische Zeitschrift 10:185–193Google Scholar
  18. 18.
    Onsager L (1931) Reciprocal relations in irreversible processes I. Phys Rev 37:405–426CrossRefGoogle Scholar
  19. 19.
    Onsager L (1931) Reciprocal relations in irreversible processes II. Phys Rev 38:2265–2279CrossRefGoogle Scholar
  20. 20.
    Schrödinger E (1967) What is life. Cambridge Press, CambridgeGoogle Scholar
  21. 21.
    Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523CrossRefGoogle Scholar
  22. 22.
    Voet D, Voet JG (1995) Biochemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  23. 23.
    Kjelstrup S, Bedeaux D (2008) Non-equilibrium thermodynamics of heterogeneous systems. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  24. 24.
    Pavelka M, Maršík F, Klika V (2014) Consistent theory of mixtures on different levels of description. Int J Eng Sci 78:192–217CrossRefGoogle Scholar
  25. 25.
    Atkins P, de Paula J (2006) Physical chemistry, 8th edn. Oxford University Press, OxfordGoogle Scholar
  26. 26.
    De Heer J (1957) The principle of Le Châtelier and Braun. J Chem Educ 34(8):375–380CrossRefGoogle Scholar
  27. 27.
    Kazuhisa M (1997) Renewable biological systems for alternative sustainable energy production [online]. Food and Agriculture Organization of the United Nations (seen 14 Jan 2016). Available at:
  28. 28.
    Key World Energy Statistics (2015) [online] The International Energy Agency (seen 18 Jan 18 2016). Available at:
  29. 29.
    World population prospects (2016) [online] United Nations, Department of Economic and Social Affairs, Population Division (seen 20 Jan 2016). Available at:
  30. 30.
    Henry CJK (2005) Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutrition 8(7A):1133–1152CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.New Technologies Research CentreUniversity of West BohemiaPilsenCzech Republic

Personalised recommendations