Thermal Analysis Scheme Anticipated for Better Understanding of the Earth Climate Changes: Impact of Irradiation, Absorbability, Atmosphere, and Nanoparticles

  • Jaroslav ŠestákEmail author
  • Pavel Hubík
  • Jiří J. Mareš
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 11)


Methodological scheme of thermal analysis is used for portraying the Earth environmental research and climate changes, showing particularly the history, effect of atmosphere reflection (albedo), and absorption (so-called greenhouse effect included). The net behavior of the Earth as a black body is reviewed. The most influential on climate changes is the alteration of the geometry of the Earth trajectory and the irradiative power of the Sun (as a standard thermoanalytical pair of the sample and radiator). Thermodynamic basis of water vapor impacts is pointed out, the absorption spectra of atmosphere are emphasized, and temperature gradients are indicated. The historical course of the Earth temperature and CO2 concentration is put in analogy with the method of gas desorption analysis, which supports the view that the variation of CO2 concentration recorded in the past may not be alone blamed for temperature changes. The influences of atmosphere nanoparticles on weather, climate, and human health are discussed, as well. With 91 references.


Earth Surface Greenhouse Effect Energetic Solar Particle Thermal Inertia Giant Planet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



J. Šesták acknowledges the support of Ministry of Education of the Czech Republic in the framework of CENTEM PLUS project (LO1402) operated under the “National Sustainability Program I.”


  1. 1.
    Strnad J (1790) Chronologisches Verzeichniss der Naturbegebenheiten in Böhmen vom Jahre 633–1700, Prag. Studnička JF (1878) Entertainment Astronomical. Kolář, Praha, p 104 (in Czech)Google Scholar
  2. 2.
    Šesták J (2008) How is it with the warming of our planet Earth and what is the role of greenhouse gases. Energetika (Prague) 10:392–395 (in Czech)Google Scholar
  3. 3.
    Lovelock J (2000) Gaia: a new look at life on the Earth. Oxford UniversityGoogle Scholar
  4. 4.
    Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable northern-hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613Google Scholar
  5. 5.
    Climate Change 2007 (2007) Synthesis report, an assessment of the intergovernmental panel on climate change.
  6. 6.
    McGovern TH (1980) Cows, harp seals, and church bells: adaptation and extinction in Norse Greenland. Human Ecol 8:245CrossRefGoogle Scholar
  7. 7.
    Šesták J (1984) Thermophysical properties of solids: theoretical thermal analysis. Elsevier, Amsterdam. (1988) Its Russian version ‘Teoreticheskij termicheskij analiz’. Moscow; Mir. (2005) Science of heat and thermophysical studies: a generalized approach to thermal analysis. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Czarnecki JP, Koga N, Šestákova V, Šesták J (1992) Factors affecting the experimentally resolved thermoanalytical curves. J Therm Anal 38:575. Czarnecki JP, Šesták J (2015) From recording balances to thermogravimetric instruments and back. J Therm Anal Calorim 120:157–166Google Scholar
  9. 9.
    Šatava V, Šesták J (1973) Mechanism of thermal decomposition of sulphate hemihydrates by isothermal and nod isothermal thermogravimetry using light-aided heating. Anal Chem 35:154. Šesták J (1993) Thermal treatment and analysis. J Therm Anal 40:1293Google Scholar
  10. 10.
    Basaran, T, Ilken Z (1998) Thermal analysis of the heating system of the small bath in ancient Phaselis. Energy Build 27:1–11. Athienitis AK, Santamouris M (2000) Thermal analysis and design of passive solar buildings. Routledge (ISBN-13: 978-1902916026)Google Scholar
  11. 11.
    Hartmann DL, Ramanathan V, Hunt GE (1986) Earth radiation budget data and climate research. Rev Geophys 24:439CrossRefGoogle Scholar
  12. 12.
    Raval A, Ramanathan V (1989) Observational determination of the greenhouse effect. Nature 342:758CrossRefGoogle Scholar
  13. 13.
    Wallace JM, Hobbs PV (1977) Atmospheric science: an introductory survey. Academic Press, LondonGoogle Scholar
  14. 14.
    Zemansky RW, Dittman RH (1952) Heat and thermodynamics. McGraw Hill, New YorkGoogle Scholar
  15. 15.
    Eskinazi S (1975) Fluid mechanics and thermodynamics of our environment. Academic Press, New YorkGoogle Scholar
  16. 16.
    Sertorio L (1991) Thermodynamics of complex systems: an introduction to eco-physics. World Science, LondonGoogle Scholar
  17. 17.
    Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New YorkGoogle Scholar
  18. 18.
    Odum HT (1996) Environmental accounting: energy and decision making. Wiley, New YorkGoogle Scholar
  19. 19.
    Bohren CF, Albrecht BA (1998) Atmosphere thermodynamics. Oxford University Press, New YorkGoogle Scholar
  20. 20.
    Maršík F, Dvořák I (1998) Biothermodynamics. Academia, Prague (in Czech)Google Scholar
  21. 21.
    Curry JA, Webster PJ (1999) Thermodynamics of atmosphere. Academic, New YorkGoogle Scholar
  22. 22.
    Berdwell A, Hoden L (2003) Weather and climate studies. Prentice Hall, New YorkGoogle Scholar
  23. 23.
    Šesták J (2004) Society, science and ecology: progress against survival (Chapter 16). Heat, thermal analysis and society. Nucleus, Hradec Králové, p 277Google Scholar
  24. 24.
    Day JA (2005) The book of clouds. Sterling. Kiehl JT, Ramanathan V (eds) (2006) Frontiers of climate modeling. Cambridge University PressGoogle Scholar
  25. 25.
    Robinson AB, Robinson NE, Soon W (2007) Environmental effects of increased atmospheric CO2. J Amer Phys Surg 12:81. (1999) Climate Res 13:171.
  26. 26.
    Šesták J (2007) Consideration on economic and ecological book Vaclav Klaus: global warming and the immensity of energy resources. Chem Listy (Prague); 101:832 (in Czech).
  27. 27.
    Šesták J, Hubík P, Mareš JJ (2010) Thermal analysis scheme aimed at better understanding of the Earth’s climate changes due to the alternating irradiation. J Therm Anal Calorim 101:567–575CrossRefGoogle Scholar
  28. 28.
    Šesták J (2006) On the availability, exploitability and sustainability of our energy resources (Chapter 9). In: Knut E, Pliska V, Folkers G (eds) Promises of science. Collegium Helveticum, Zurich, p 69Google Scholar
  29. 29.
    Fourier JB (1822) Theorie analytique de la chaleur. ParisGoogle Scholar
  30. 30.
    Faraday M (1860) Chemical history of candle. Royal Inst, LondonGoogle Scholar
  31. 31.
    Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Phil Mag 41:237CrossRefGoogle Scholar
  32. 32.
    Twomay S (1974) Pollution and the planetary albedo. Atmos Environ 8:1251CrossRefGoogle Scholar
  33. 33.
    Teller A, Levin Z (2006) The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model. Atmos Chem Phys 6:67CrossRefGoogle Scholar
  34. 34.
    Guisbier G, Buchaillot L (2009) Universal size/shape-dependent law for characteristic temperatures. Phys Lett A 374:305. Vanithakurami SC, Nada KK (2008) Universal relation for the cohesive energy of nanoparticles. Phys Lett A 372:6930Google Scholar
  35. 35.
    Tyndall J (1861) On the absorption and radiation of heat by gases and vapors. Philos Mag 22:169, 173Google Scholar
  36. 36.
    Langley SP (1884) Researches on solar heat and its absorption by the Earth atmosphere. Report of the Mt. Whitney expedition. Governmental Printing, WashingtonGoogle Scholar
  37. 37.
    Kaplan LD (1959) The atmosphere and the sea in motion. Rockefeller Inst. Press, New York (in particular, the chapter “Calculation of infrared fluxes” pp. 170)Google Scholar
  38. 38.
    Poynting JH (1904) Radiation in the solar system. Phil Trans A 202:525CrossRefGoogle Scholar
  39. 39.
    Tverskoy PN (1951) Course on meteorology: atmospheric physics. Hydrometeorol Izdatelstvo, Leningrad (in Russian)Google Scholar
  40. 40.
    Goody RM (1964) Atmospheric radiation: theoretical basis. Clerandon, New YorkGoogle Scholar
  41. 41.
    Bednář J (1989) Special phenomena in the Earth atmosphere. Academia, Prague (in Czech)Google Scholar
  42. 42.
    Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130CrossRefGoogle Scholar
  43. 43.
    Sussman GJ, Wisdom J (1992) Chaotic evolution of the solar system. Science 257:56CrossRefGoogle Scholar
  44. 44.
    Lean JL (2010) Cycles and trends in solar irradiance and climate. Wiley interdisciplinary reviews: climate change 1:111–122. Haigh J (2011) Solar influences on climate. Grantham Institute for Climate Change, Briefing paper No 5, London, Imperial CollegeGoogle Scholar
  45. 45.
    Huybers P (2007) Glacial variability over the past two million years. Quat Sci Rev 26:37CrossRefGoogle Scholar
  46. 46.
    Oeschger H, Langway CC (eds) (1989) The environmental record in glaciers and ice sheet. Wiley, New YorkGoogle Scholar
  47. 47.
    Milankovitch M (1920) Theorie Methematique des Phenomenes Thermiques produits par la Radiation Solaire. Gauthier-Villars, ParisGoogle Scholar
  48. 48.
    Kutilek M (2008) Rationally about the global warming. Prague, Dokořán (in Czech)Google Scholar
  49. 49.
    Clough HG (1905) Synchronous variations in solar and terrestrial phenomena. Astrophys J 22:42CrossRefGoogle Scholar
  50. 50.
    Christensen EF, Lassen K (1991) Length of the solar cycles as an indicator of solar activity closely associated with the Earth’s climate. Science 254:698. (1995) J Atmos Terr Phys 57:835Google Scholar
  51. 51.
    Haigh J (1996) On the impact of solar variability on climate. Science 272:767CrossRefGoogle Scholar
  52. 52.
    NASA/Marshal Solar Physics. The sunspot cycle. Websites:
  53. 53.
    Hoyt DV, Schatten KH (1997) The role of the Sun in climate changes. Oxford University Press, New YorkGoogle Scholar
  54. 54.
    Svensmark H, Christensen EF (1997) Variation of cosmic ray flux and global cloud coverage—a missing link in solar climate relationships. J Atmos Sol Terr Phys 59:1225. Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhoj UI (2007) Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proc R Soc A 463:385Google Scholar
  55. 55.
    Singer SF, Awery DT (2007) Unstoppable global worming every 1500 years. Rownan-Littefield, LanhamGoogle Scholar
  56. 56.
    Landscheidt T (1997) Klimavorhersage mit astronomischen Mitteln? Fusion 18:58Google Scholar
  57. 57.
    Arnold VI (1963) Small denominators and problems of stability in classical and celestial mechanics. Russian Math Surv 18:85 (in Russian)CrossRefGoogle Scholar
  58. 58.
    Maršík F (1999) Thermodynamics of continuum. Academia, PragueGoogle Scholar
  59. 59.
    Pauluis OM (2005) Water vapor and entropy production on the Earth’s atmosphere. In: Kleidon A, Lorens RD (eds) Nonequilibrium thermodynamics and production of entropy. Springer, Heidelberg, pp 107–119Google Scholar
  60. 60.
    Adams DL, Renno NO (2005) Thermodynamic efficiencies of an idealized global climate model. Clim Dyn 25:801–813CrossRefGoogle Scholar
  61. 61.
    Singer SF (2001) Satellite observations of atmospheric gases. Wall Street Journal, Sept. 10 (data from US Weather Satellite Service)Google Scholar
  62. 62.
    Ramanathan V (1987) The Role of ocean-atmosphere interaction in the CO2 climate problem. J Atmos Sci 38:918. (1987) The role of Earth radiation budget in climate and general circulation research. J Geophys Res 38:4075Google Scholar
  63. 63.
    Zámostný P, Kukula P, Young JS (1999) Possible green house gases and global climate change. Chemické listy (Prague) 93:238 (in Czech)Google Scholar
  64. 64.
    Houghton RA (2007) Balancing the global carbon budget. Ann Rev Earth Planet Sci 35:313CrossRefGoogle Scholar
  65. 65.
    Romanova V, Lohmann G, Grosfel K (2006) Effect of land albedo, CO2, orography and ocean heat transport on extreme climate. Clim Past 2:31CrossRefGoogle Scholar
  66. 66.
    Rodhe H (1990) A comparison of the contribution of various gases to greenhouse effect. Science 248:1217CrossRefGoogle Scholar
  67. 67.
    Burgmeister J (2007) Missing carbon mystery: case solved? Nat Rep Clim Change 3:37Google Scholar
  68. 68.
    Petit JR (1999) Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  69. 69.
    Humlum O, Stordahl K, Solheim J (2013) The phase relation between atmospheric carbon dioxide and global temperature. Glob Planet Change 100:51–69Google Scholar
  70. 70.
    Kuo C, Lindberg CR, Thorson D (1990) Coherence established between the atmospheric CO2 and global temperature. Nature 343:709CrossRefGoogle Scholar
  71. 71.
    Henderson GE (2006) Caving into new chronologies. Science 313:620. (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. A collective report. Science 317:793Google Scholar
  72. 72.
    Chalmers JA (1957) Atmospheric electricity. Pergamon, LondonGoogle Scholar
  73. 73.
    Rycroft MJ, Harrison RG, Nicoll NA, Mareev AE (2008) An overview of earth’s global electric circuit and atmospheric conductivity. Space Sci Rev 137:83–105. Harrison RG, Ambaum MHP (2009) Observed atmospheric electricity effect on clouds. Environ Res Let 4:4Google Scholar
  74. 74.
    Harrison RG, Carslaw KS, (2003) Ion-aerosol-cloud processes in the lower atmosphere. Rev Geophys 41. Buseck PR, Adachi K (2008) Nanoparticles in the atmosphere. Elements 4:389. doi: 10.1029/2002RG000114
  75. 75.
    Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11(Suppl 1):S13CrossRefGoogle Scholar
  76. 76.
    Stone V, Nowack B, Baun A, van den Brink N, Kammer F, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes TF (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterization. Sci Total Environ 408:1745–1754CrossRefGoogle Scholar
  77. 77.
    Kulmala M, Kerminen VM (2008) On the formation and growth of atmospheric nanoparticles. Atmos Res 90:132–150CrossRefGoogle Scholar
  78. 78.
    Biswas P, Wu C (2005) Nanoparticles and the environment. Air Waste Manage Assoc 55:708–746CrossRefGoogle Scholar
  79. 79.
    Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71Google Scholar
  80. 80.
    Xia T, Li N, Nel AE (2009) Potential health impact risk of nanoparticles. Ann Rev Pub Health 29:137–150CrossRefGoogle Scholar
  81. 81.
    Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  82. 82.
    Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445CrossRefGoogle Scholar
  83. 83.
    Simkó M, Mattsson MO (2010) Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol 7:42CrossRefGoogle Scholar
  84. 84.
    Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12:635–641CrossRefGoogle Scholar
  85. 85.
    Price JC (1977) Thermal inertia mapping: a new view of the Earth. J Geophys Res (oceans and atmospheres) 82:2582–2590. Xue Y, Cracknell AP (1995) Advanced thermal inertia modeling. Int J Remote Sens Environ 16:431–446Google Scholar
  86. 86.
    Carlson TY, Dodd JK, Benjamin SG, Cooper JN (1981) Satellite estimation of the surface energy balance, moisture availability and thermal inertia. J Appl Meteorol 20:67–87CrossRefGoogle Scholar
  87. 87.
    Nearing SG, Moran MS, Scott RL, Ponce-Campos G (2012) Coupling diffusion and maximum entropy models to estimate thermal inertia. Int J Remote Sens Environ 119:222–231CrossRefGoogle Scholar
  88. 88.
    Murray T, Verhoef A (2007) Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements: a universal approach to calculate thermal inertia. Agric For Meteorol 147:80–87CrossRefGoogle Scholar
  89. 89.
    Wang J, Bras RL, Sivandran G, Knox RG (2010) A simple method for the estimation of thermal inertia. Geophys Res Lett 37:L05404 doi: 10.1029/2009GL041851
  90. 90.
    Wang J, Bras RL (1999) Ground heat flux estimated from surface soil temperature. J Hydrol 216:214–226CrossRefGoogle Scholar
  91. 91.
    Holba P, Šesták J (2015) Heat inertia and its role in thermal analysis. J Therm Anal Calor 121:303–307. Šesták J (2014) Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics while ignoring thermal inertia? J Therm Anal Calorim 117:3–7Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Jaroslav Šesták
    • 1
    Email author
  • Pavel Hubík
    • 2
  • Jiří J. Mareš
    • 2
  1. 1.New Technologies Research Centre (NTC-ZČU)University of West BohemiaPilsenCzech Republic
  2. 2.Division of Solid-State PhysicsInstitute of Physics, Czech Academy of SciencesPragueCzech Republic

Personalised recommendations