Skip to main content

Model Uncertainty in a Holistic Perspective

  • Conference paper
  • First Online:
Advanced Modelling in Mathematical Finance

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 189))

Abstract

This paper focuses on model uncertainty within a holistic perspective. The latter is characterized by a consistent approach to risk measurement by combining stochastic, economic, operational and regulatory elements. This paper is a plea to account for model uncertainties on the level of consequences and not at the level of risk factors. This has important implications for validation, auditing and is of use testing of internal models. In line with risk management approaches, uncertainties have to managed. The starting point for this process is the identification and measurement of uncertainties. To achieve this goal further specific criteria for validity and resilience, are introduced in this paper. Examples from real world internal models highlight the practical relevance of the introduced concepts. A concluding section summarizes the main insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson, T.: Value and Capital Management. Wiley, New York (2015)

    Google Scholar 

  2. Edgeworth, F.Y.: The mathematical theory of banking. J. Roy. Stat. Soc. 51, 113–127.l (1888)

    Google Scholar 

  3. Padoa-Schioppa, T.: Regulating Finance (2004)

    Google Scholar 

  4. Bennemann, C., Oehlenberg, L., Stahl, G.: Handbuch Solvency II. Schäffer Poeschel (2011)

    Google Scholar 

  5. Luhmann, N.: Soziologie des Risikos, Walter de Gruyter, Berlin (2003)

    Google Scholar 

  6. Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R., Beleraji, A.: An Academic Response on Basel 3.5, 2013, Preprint, 45, 45,

    Google Scholar 

  7. Puccetti, G., Rüschendorf, L., Small, D., Vanduffel, S.: Reduction of Value-at-Risk bounds by independence and variance information. Scand. Actuarial J 9 (2016). Forthcoming

    Google Scholar 

  8. Vanduffel, S.: Value-at-risk bounds with variance constraints, Preprint, 6, 8 (2015)

    Google Scholar 

  9. SCOR Switzerland AG: From Principle-Based Risk Management to Solvency Requirements, Analytical Framework for the Swiss Solvency Test, Second Edn. (2008)

    Google Scholar 

  10. BIS, Amendment to the Basel Accord to Incorporate Market Risk. BIS, Basel (1996)

    Google Scholar 

  11. Stahl, G.: Three Cheers, 1997 May, Risk Magazine

    Google Scholar 

  12. Heyde, C.C., Kou, S.G., Peng, X.H.: What Is a Good Risk Measure: Bringing the Gaps between Data, Coherent Risk Measures, and Insurance Risk Measures, Preprint (2006)

    Google Scholar 

  13. Morgan, J.P.: Riskmetrics—technical document

    Google Scholar 

  14. Jaschke, S., Stahl, G., Stehle, S.: Value-at-Risk forecasts under scrutiny—the German experience. Quant. Financ. 7(6), 621–636 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Roy, A.D.: Safety First and the Holding of Assets. Econometrica 20, 1351–1360 (1952)

    Google Scholar 

  16. Aven, T.: Quantitative Risk Assessment, Cambridge (2011)

    Google Scholar 

  17. International Standard: Risk management—Principles and guidelines, First Edn. (2009)

    Google Scholar 

  18. BaFin, Minimum Requirements for Risk Management in Insurance Undertakings, 2009, Circular 3/2009,

    Google Scholar 

  19. Standard & Poor’s: Enterprise Risk Management For Financial Institutions: Rating Criteria and Best Practices (2005)

    Google Scholar 

  20. Standard & Poor’s: Insurance criteria: refining the focus of insurer enterprise risk management criteria (2006)

    Google Scholar 

  21. Diebold, F.X., Doherty, N.A., Herring, R.J.: The Konwn, the Unknown and the Unknowable in Financial Risk Management. Princeton University Press (2010)

    Google Scholar 

  22. Association of British Insurers, Non-modeled Risks—A guide to more complete catastrophe risk assessment for (re)insurers (2014)

    Google Scholar 

  23. Aven, T., Baraldi, P., Flage, R., Zino, E.: Uncertainty in Risk Assessment, Wiley (2014)

    Google Scholar 

  24. Pedroni, N., Zio, E., Ferrario, E., Pasanisi, A., Couplet, M.: Propagation of aleatory and epistemic uncertainties in the model for the design of a flood protection dike. Oper. Res. Lett. 32, 399–408 (2012)

    Google Scholar 

  25. Dubois, D.: Possibility theory and statistical reasoning. Comput. Stat. Data Anal. 51, 47–69 (2006)

    Google Scholar 

  26. Baudrit, C., Dubois, D.: Practical representations of incomplete probabilistic knowledge. Compuat. Stat. Data Anal. 51, 86–108 (2006)

    Google Scholar 

  27. International Standard: Guide to the Expression of Uncertainty in Measurement, First Edn. (1995)

    Google Scholar 

  28. Oberkampf, W., Roy, C.: Validation and Verfication in Scientific Computing. Cambridge University Press (1010)

    Google Scholar 

  29. Cruz, M., Peters, G., Shevchenko, P.: Fundamental Aspects of Operational Risk and Insurance Analytics. Wiley, New York (2015)

    Google Scholar 

  30. Comptroller of the Currency: Model Validation, 2011, OCC Bulletin 2011–12,

    Google Scholar 

  31. EIOPA, The underlying assumptions in the standard formulafor the Solvency Capital Requirement calculation, 2014, EIOPA-14-322,

    Google Scholar 

  32. Aven, T., B.: Heide, Realibility and validity of risk analysis, Eng. Safety. Syst. 94, 1491–1498 (2009)

    Google Scholar 

  33. Barrieu, P., Scandolo, G.: Assessing Financial Model Risk. Electron. J. Oper. Res. (2013)

    Google Scholar 

  34. Bank for International Settlements: Fundamental review of the trading book: A revised market risk framework. BIS October 2014 (2014)

    Google Scholar 

  35. Huber, P.J., Ronchetti, E.: Robust Statistics, Wiley (2009)

    Google Scholar 

  36. Cont, R., Dequest, R., Scandolo, G.: Robustness and sensitivity analysis of risk measurement procedures, 2007, Financial Engineering Report No. 2007-06

    Google Scholar 

  37. Stahl, G., Kiesel, R., Zheng, J., Rühlicke, R.: Conceptionalizing robustness in risk managment. Preprint (2012)

    Google Scholar 

  38. Föllmer, H., Weber, S.: The Axiomatic Approach to Risk Measures for Capital Determination. Preprint (2015)

    Google Scholar 

  39. Jaschke, S., Stahl, G., Internal models in Solvency II, 2007 March, Life and Pensions

    Google Scholar 

  40. Pfeifer, D., Strassburger, D., Philipps, J.: Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas. Preprint (2009)

    Google Scholar 

  41. Cambou, M., Filipovic, D.: Model Uncertainty and Scenario Aggregation. Preprint (2015)

    Google Scholar 

  42. Clemen, R.T., Winkler, R.L.: Combining probability distributions from experts in risk analysis. J. Risk Anal. 2, 187–203 (1999)

    Google Scholar 

  43. Gilboa, I., Schmeidler, D.: Maximum expected utility with a non-unique prior. J. Math. Econ. 22, 173–188 (1989)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Stahl .

Editor information

Editors and Affiliations

Appendix

Appendix

Gaussian Distribution

Non parametric estimator

For the non parametric case we use the estimator

$$\begin{aligned} \epsilon _{np}=\hat{\sigma }*\sqrt{\frac{\alpha *(1-\alpha )}{n*f^{2}(\Phi ^{-1}(\alpha ))}}*\Phi ^{-1}\left( 1-\frac{\vartheta }{2}\right) , \end{aligned}$$
(54)

with \(\hat{\sigma }\) the estimated standard deviation, \(\alpha \) the quantile for which the standard error is calculated, n the sample size, f the density of the standard normal distribution, \(\Phi ^{-1}\) the quantile function of the standard normal distribution and \(\vartheta \) the confidence level.

Parametric estimator

For the parametric case we use the estimator

$$\begin{aligned} \epsilon _{p}=\frac{1}{\sqrt{n}}*\Phi ^{-1}\left( 1-\frac{\vartheta }{2}\right) *\hat{\sigma }*\sqrt{1+\frac{(\Phi ^{-1}(\alpha ))^{2}}{2}}, \end{aligned}$$
(55)

with the same notation as before.

GEV Distribution

The density of the GEV distribution is given by

$$\begin{aligned} f(x;\mu ,\sigma ,\xi ) = \frac{1}{\sigma }\left[ 1+\xi \left( \frac{x-\mu }{\sigma }\right) \right] ^{(-1/\xi )-1} \exp \left\{ -\left[ 1+\xi \left( \frac{x-\mu }{\sigma }\right) \right] ^{-1/\xi }\right\} \end{aligned}$$

for \(1+\xi (x-\mu )/\sigma >0\), where \(\mu \in \mathbb {R}\) is the location parameter, \(\sigma > 0\) is the scale parameter and \(\xi \in \mathbb R\) denotes the shape parameter.

Non parametric estimator

For the non parametric case we use the estimator

$$\begin{aligned} \epsilon _{np}=\sqrt{\frac{\alpha *(1-\alpha )}{n*\bar{f}^{2}(\bar{F}^{-1}(\alpha ))}}*\Phi ^{-1}\left( 1-\frac{\vartheta }{2}\right) , \end{aligned}$$
(56)

with the same notations as in (54) and \(\bar{f}=f(x;\hat{\mu },\hat{\sigma },\hat{\xi })=f(x;-8530.60,739.99,-0.116)\) the density of the estimated GEV distribution \(\bar{F}\). The parameters were estimated with the Log-likelihood function using the method of Nelder and Mead to determine the maximum of the function.

Parametric estimator

For the parametric case we use the estimator

$$\begin{aligned} \epsilon _{p}=\sqrt{\frac{1}{n}*\bar{a}^{-1}*(I(\hat{\Theta }))^{-1}*\bar{a}}*\Phi ^{-1}\left( 1-\frac{\vartheta }{2}\right) , \end{aligned}$$
(57)

with

$$\begin{aligned} \bar{a}=\begin{pmatrix}1\\ \frac{1}{\hat{\xi }}*((-\log {(\alpha )})^{-\hat{\xi }}-1)\\ \hat{\sigma }*\left[ -\frac{1}{\hat{\xi }^{2}}*((-\log {(\alpha )})^{-\hat{\xi }}-1)-\log {(-\log {(\alpha )})}*(-\log {(\alpha )})^{-\hat{\xi }}\right] \end{pmatrix}, \end{aligned}$$
(58)

where \(I(\hat{\Theta })\) denotes the observed Fisher information matrix. For different sample sizes we get the following results for the 0.05 % quantile and 95 % confidence level:

BURR Distribution

The density of the BURR distribution is given by

$$\begin{aligned} f(x; a,b,q)= & {} \frac{aq (x-c)^{a-1}}{ b^a \left[ 1 + \left( \frac{x-c}{b}\right) ^a\right] ^{1+q}},\,\,\, \text{ for } x>c. \end{aligned}$$

In addition to the shape parameters \(a>0\) and \(q>0\) and the scaling parameter \(b>0\) we introduce a location parameter \(c \in \mathbb {R}\) to relax the property that the density lives on the positive half line.

Non parametric estimator

For the non parametric case we use the estimator

$$\begin{aligned} \epsilon _{np}=\sqrt{\frac{\alpha *(1-\alpha )}{n*\tilde{f}^{2}(\tilde{F}^{-1}(\alpha ))}}*\Phi ^{-1}\left( 1-\frac{\vartheta }{2}\right) , \end{aligned}$$
(59)

with the same notations as in (54) and \(\tilde{f}=f(x;\hat{a},\hat{b},\hat{q})=f(x;14.24,6912.24,1.28)\) the density of the estimated BURR distribution \(\tilde{F}\). The parameters were estimated with the Log-likelihood function using the method of Nelder and Mead to determine the maximum of the function. The parameter c was estimated with 1.33*min(data).

Parametric Estimator

For the parametric case we use the estimator

$$\begin{aligned} \epsilon _{p}=\sqrt{\frac{1}{n}*\bar{E}^{-1}*(I(\hat{\Theta }))^{-1}*\bar{E}}*\Phi ^{-1}\left( 1-\frac{\vartheta }{2}\right) , \end{aligned}$$
(60)

with

$$\begin{aligned} \bar{E}=\begin{pmatrix}-\frac{\hat{b}}{\hat{a}^{2}}*\log {(\beta )}*\beta ^{\frac{1}{\hat{a}}}\\ \beta ^{\frac{1}{\hat{a}}}\\ \frac{\hat{b}}{\hat{a}}*\frac{\log {(1-\alpha )}}{\hat{q}^{2}}*(1+\beta )*\beta ^{\frac{1}{\hat{a}}-1}\end{pmatrix} \end{aligned}$$
(61)

and \(\beta =(1-\alpha )^{-\frac{1}{\hat{q}}}-1\) and the same notations as before.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Stahl, G. (2016). Model Uncertainty in a Holistic Perspective. In: Kallsen, J., Papapantoleon, A. (eds) Advanced Modelling in Mathematical Finance. Springer Proceedings in Mathematics & Statistics, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-45875-5_9

Download citation

Publish with us

Policies and ethics