Skip to main content

A Unified View of LIBOR Models

  • Conference paper
  • First Online:
Advanced Modelling in Mathematical Finance

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 189))

Abstract

We provide a unified framework for modeling LIBOR rates using general semimartingales as driving processes and generic functional forms to describe the evolution of the dynamics. We derive sufficient conditions for the model to be arbitrage-free which are easily verifiable, and for the LIBOR rates to be true martingales under the respective forward measures. We discuss when the conditions are also necessary and comment on further desirable properties such as those leading to analytical tractability and positivity of rates. This framework allows to consider several popular models in the literature, such as LIBOR market models driven by Brownian motion or jump processes, the Lévy forward price model as well as the affine LIBOR model, under one umbrella. Moreover, we derive structural results about LIBOR models and show, in particular, that only models where the forward price is an exponentially affine function of the driving process preserve their structure under different forward measures.

Financial support from the PROCOPE project “Financial markets in transition: mathematical models and challenges” and the Europlace Institute of Finance project “Post-crisis models for interest rate markets” is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We could, of course, use the following affine function \(g^k(t,x) = \log F(0,T_k,T_N) + \theta ^k(t) + \vartheta ^k(t)x\) and the model fits automatically the initial term structure. However, it becomes then difficult to provide models that produce non-negative LIBOR rates.

References

  1. Andersen, L.B.G., Piterbarg, V.V.: Interest Rate Modeling, vols. 3. Atlantic Financial Press (2010)

    Google Scholar 

  2. Belomestny, D., Mathew, S., Schoenmakers, J.: Multiple stochastic volatility extension of the LIBOR market model and its implementation. Monte Carlo Methods Appl. 15, 285–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bianchetti, M., Morini, M. (eds.): Interest Rate Modelling After the Financial Crisis. Risk Books (2013)

    Google Scholar 

  4. Brace, A., Ga̧tarek, D., Musiela, M.: The market model of interest rate dynamics. Math. Financ. 7, 127–155 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brigo, D., Mercurio, F.: Interest Rate Models: Theory and Practice, 2nd edn. Springer (2006)

    Google Scholar 

  6. Criens, D., Glau, K., Grbac, Z.: Martingale property of exponential semimartingales: a note on explicit conditions and applications to financial models. Preprint (2015). arXiv:1506.08127

  7. Duffie, D., Filipović, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13, 984–1053 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eberlein, E., Kluge, W.: Exact pricing formulae for caps and swaptions in a Lévy term structure model. J. Comput. Financ. 9(2), 99–125 (2006)

    Google Scholar 

  9. Eberlein, E., Kluge, W.: Valuation of floating range notes in Lévy term structure models. Math. Financ. 16, 237–254 (2006)

    Google Scholar 

  10. Eberlein, E., Özkan, F.: The Lévy LIBOR model. Financ. Stoch. 9, 327–348 (2005)

    Article  MATH  Google Scholar 

  11. Filipović, D., Trolle, A.: The term structure of interbank risk. J. Financ. Econom. 109, 707–733 (2013)

    Article  Google Scholar 

  12. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer (2003)

    Google Scholar 

  13. Goll, T., Kallsen, J.: Optimal portfolios for logarithmic utility. Stoch. Process. Appl. 89, 31–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grbac, Z., Runggaldier, W.J.: Interest Rate Modeling: Post-Crisis Challenges and Approaches. SpringerBriefs in Quantitative Finance. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  15. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer (2003)

    Google Scholar 

  16. Jamshidian, F.: LIBOR and swap market models and measures. Financ. Stoch. 1, 293–330 (1997)

    Article  MATH  Google Scholar 

  17. Jamshidian, F.: LIBOR Market Model with Semimartingales. Working Paper, NetAnalytic Ltd. (1999)

    Google Scholar 

  18. Kallsen, J.: A didactic note on affine stochastic volatility models. In: Kabanov, Y, Lipster, R., Stoyanov, J. (eds.) From Stochastic Calculus to Mathematical Finance: The Shiryaev Festschrift, pp. 343–368. Springer (2006)

    Google Scholar 

  19. Kallsen, J., Shiryaev, A.N.: The cumulant process and Esscher’s change of measure. Financ. Stoch. 6, 397–428 (2002)

    Google Scholar 

  20. Kallsen, J., Shiryaev, A.N.: Time change representation of stochastic integrals. Theory Probab. Appl. 46, 522–528 (2002)

    Google Scholar 

  21. Keller-Ressel, M., Papapantoleon, A., Teichmann, J.: The affine LIBOR models. Math. Financ. 23, 627–658 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Klein, I., Schmidt, T., Teichmann, J.: No-arbitrage theory for bond markets. In: Advanced modelling in mathematical finance, pp. 381–421. Springer, Switzerland (2016)

    Google Scholar 

  23. Kluge, W.: Time-inhomogeneous Lévy processes in interest rate and credit risk models. PhD thesis, Univ. Freiburg (2005)

    Google Scholar 

  24. Kluge, W., Papapantoleon, A.: On the valuation of compositions in Lévy term structure models. Quant. Financ. 9, 951–959 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ladkau, M., Schoenmakers, J., Zhang, J.: Libor model with expiry-wise stochastic volatility and displacement. Int. J. Portfolio Anal. Manag. 1, 224–249 (2013)

    Article  Google Scholar 

  26. Miltersen, K.R., Sandmann, K., Sondermann, D.: Closed form solutions for term structure derivatives with log-normal interest rates. J. Financ. 52, 409–430 (1997)

    Article  Google Scholar 

  27. Musiela, M., Rutkowski, M.: Continuous-time term structure models: forward measure approach. Financ. Stoch. 1, 261–291 (1997)

    Article  MATH  Google Scholar 

  28. Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modelling  2nd edn. Springer (2005)

    Google Scholar 

  29. Papapantoleon, A.: Old and new approaches to LIBOR modeling. Stat. Neerl. 64, 257–275 (2010)

    Article  MathSciNet  Google Scholar 

  30. Papapantoleon, A., Schoenmakers, J., Skovmand, D.: Efficient and accurate log-Lévy approximations to Lévy-driven LIBOR models. J. Comput. Financ. 15(4), 3–44 (2012)

    Article  Google Scholar 

  31. Schoenmakers, J.: Robust LIBOR Modelling and Pricing of Derivative Products. Chapman & Hall/CRC Press (2005)

    Google Scholar 

  32. Wheatley, M.: The Wheatley Review of LIBOR. Technical report, HM Treasury (2012)

    Google Scholar 

  33. Wu, L., Zhang, F.: LIBOR market model with stochastic volatility. J. Industr. Manag. Optim. 2, 199–227 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis Papapantoleon .

Editor information

Editors and Affiliations

Appendix A: Semimartingale Characteristics and Martingales

Appendix A: Semimartingale Characteristics and Martingales

Let \((\Omega ,{\mathcal {F}},({\mathcal {F}}_{t})_{t\in [0,T_*]},{\mathbb {P}})\) denote a complete stochastic basis and \(T_*\) denote a finite time horizon. Let X be an \({\mathbb {R}^{d}}\)-valued semimartingale on this basis whose characteristics are absolutely continuous, i.e. its local characteristics are given by (bcFA) with \(A_{t}=t\), for some truncation function h; cf. Jacod and Shiryaev [15, Proposition II.2.9]. Moreover, let \(f:{\mathbb {R}}_{+}\times {\mathbb {R}^{d}}\rightarrow {\mathbb {R}}\) be a function of class \(C^{1,2}({\mathbb {R}}_{+}\times {\mathbb {R}^{d}})\).

The process \(f(\cdot , X)\) is a real-valued semimartingale which has again absolutely continuous characteristics. Let us denote its local characteristics by \((b^{f}, c^{f}, F^{f})\) for a truncation function \(h^{f}\). Then, noting that Itô’s formula holds for the function \(f \in C^{1,2}({\mathbb {R}}_{+} \times {\mathbb {R}^{d}})\) and reasoning as in the proof of Corollary A.6 from Goll and Kallsen [13], we have that

$$\begin{aligned} b^{f}_{t}&= \frac{{{\mathrm {d}}}}{{{{\mathrm {d}}}}t} f(t, X_{t-}) + \langle {\mathrm {D}}f(t, X_{t-}), b_{t} \rangle + \frac{1}{2} \sum _{i,j=1}^{d} {\mathrm {D}}_{ij}^{2} f(t, X_{t-}) c_{t}^{ij} \nonumber \\ \nonumber&\quad + \int \limits _{{\mathbb {R}^{d}}} \left( h^{f}\big (f(t, X_{t-}+x)-f(t, X_{t-})\big ) - \langle {\mathrm {D}}f(t, X_{t-}), h(x)\rangle \right) F_{t}({{\mathrm {d}}}x)\\ c^{f}_{t}&= \big \langle {\mathrm {D}}f(t, X_{t-}), c_{t} {\mathrm {D}}f(t, X_{t-})\big \rangle \\ \nonumber F^{f}_t(G)&= \int \limits _{{\mathbb {R}^{d}}} {1}_{G} \big (f(t, X_{t-}+x)-f(t, X_{t-})\big ) F_{t}({{\mathrm {d}}}x), \quad \quad G \in {\mathcal {B}}({\mathbb {R}}\setminus \{0\}). \end{aligned}$$
(A.1)

Proposition A.1

Let X be an \({\mathbb {R}^{d}}\)-valued semimartingale with absolutely continuous characteristics (bcF) and let \(f: {\mathbb {R}}_{+} \times {\mathbb {R}^{d}}\rightarrow {\mathbb {R}}\) be a function of class \(C^{1, 2}\) such that the process Y defined by

$$\begin{aligned} Y_{t} := \mathrm {e}^{f(t, X_{t})} \end{aligned}$$
(A.2)

is exponentially special. If the following condition holds

$$\begin{aligned} \langle {\mathrm {D}}f(t, X_{t-}), b_t \rangle&= - \frac{{{\mathrm {d}}}}{{{{\mathrm {d}}}}t} f(t, X_{t-}) - \frac{1}{2} \sum _{i,j=1}^{d} {\mathrm {D}}_{ij}^{2} f(t,X_{t-}) c_{t}^{ij} \nonumber \\&\quad - \frac{1}{2} \big \langle {\mathrm {D}}f(t, X_{t-}), c_t {\mathrm {D}}f(t, X_{t-})\big \rangle \\&- \int \limits _{{\mathbb {R}^{d}}} \Big ( \mathrm {e}^{f(t, X_{t-}+x)-f(t, X_{t-})} - 1 - \langle {\mathrm {D}}f(t, X_{t-}), h(x)\rangle \Big ) F_{t}({{\mathrm {d}}}x), \nonumber \end{aligned}$$
(A.3)

then Y is a local martingale.

Proof

The proof follows from Theorem 2.18 in Kallsen and Shiryaev [19]: set \(\theta =1\) and apply the theorem to the semimartingale \(f(\cdot , X)\). Indeed, since \(f(\cdot , X)\) has absolutely continuous characteristics it is also quasi-left continuous, hence assertions (6) and (1) of Theorem 2.18. yield

$$ K^{f(\cdot , X)} (1) = \widetilde{K}^{f(\cdot , X)}(1) = \int \limits _{0}^{\cdot } \Big ( b^{f}_{t} + \frac{1}{2} c^{f}_{t} + \int \limits _{{\mathbb {R}}} \big ( \mathrm {e}^{x}-1-h^{f}(x)\big ) F^{f}_{t}({{\mathrm {d}}}x) \Big ) {{\mathrm {d}}}t. $$

By definition of the exponential compensator and Theorem 2.19 in Kallsen and Shiryaev [19] it follows that

$$ \mathrm {e}^{f(\cdot , X)- K^{f(\cdot , X)}(1)} \in {\mathcal {M}}_{\mathrm {loc}}. $$

Therefore, \(\mathrm {e}^{f(\cdot , X)} \in {\mathcal {M}}_{\mathrm {loc}}\) if and only if \(K^{f(\cdot , X)}(1)=0\) up to indistinguishability. Equivalently,

$$ b^{f}_{t} + \frac{1}{2} c^{f}_{t} + \int \limits _{{\mathbb {R}}} \big ( \mathrm {e}^{x}-1-h^{f}(x)\big ) F^{f}_{t}({{\mathrm {d}}}x) = 0 $$

for every t. Inserting the expressions for \(b^{f}, c^{f}\) and \(F^{f}\), cf. (A.1), into the above equality yields condition (A.3). \(\square \)

Proposition A.2

Let X be an \({\mathbb {R}^{d}}\)-valued semimartingale with absolutely continuous characteristics (bcF) such that

$$\begin{aligned} \int \limits _{0}^{T_*} \int \limits _{{\mathbb {R}^{d}}} (|x|^{2} \wedge 1) F_{t}({{\mathrm {d}}}x) {{\mathrm {d}}}t + \int \limits _{0}^{T_*} \int \limits _{|x|>1} |x| \mathrm {e}^{K |x|} F_{t}({{\mathrm {d}}}x) {{\mathrm {d}}}t < C_{1} \end{aligned}$$
(A.4)

and

$$\begin{aligned} \int \limits _{0}^{T_*} \Vert c_{t}\Vert {{\mathrm {d}}}t < C_{2}, \end{aligned}$$
(A.5)

for some deterministic constants \(C_{1},C_{2}>0\). Moreover, let \(f: {\mathbb {R}}_{+} \times {\mathbb {R}^{d}}\rightarrow {\mathbb {R}}\) be a function of class \(C^{1, 2}\) and globally Lipschitz with constant \(K>0\) such that

$$ |f(t, x)-f(t,y)| \le K |x-y|, \qquad t \ge 0, \ \ x,y \in {\mathbb {R}^{d}}. $$

Then, the process \(f(\cdot , X)\) is exponentially special, while the process Y defined by (A.2) and satisfying (A.3) is a uniformly integrable martingale.

Proof

The process \(f(\cdot , X)\) is exponentially special if and only if

$$ {1}_{\{|x|>1\}} \mathrm {e}^{x} *\nu ^{f} \in {\mathcal {V}}. $$

Hence, it suffices to show that \({1}_{\{|x|>1\}} \mathrm {e}^{x} *\nu ^{f}_{T_*} < \infty \), as the integrand is positive. Since f is globally Lipschitz, we have

$$\begin{aligned} {1}_{\{|x|>1\}} \mathrm {e}^{x} *\nu ^{f}_{T_*}&= \int \limits _{0}^{T_*} \int \limits _{|x|>1} \mathrm {e}^{x} F_t^{f} ({{\mathrm {d}}}x) {{\mathrm {d}}}t \\&\mathop {=}\limits ^{(A.1)} \int \limits _{0}^{T_*} \int \limits _{{\mathbb {R}^{d}}} {1}_{\{|f(t, X_{t-}+x)-f(t, X_{t-})|>1\}} \mathrm {e}^{f(t, X_{t-}+x) - f(t, X_{t-})} F_t ({{\mathrm {d}}}x) {{\mathrm {d}}}t \\&\le \int \limits _{0}^{T_*} \int \limits _{K |x|>1} \mathrm {e}^{K |x|} F_t ({{\mathrm {d}}}x) {{\mathrm {d}}}t < \infty , \end{aligned}$$

which holds by the Lipschitz property and (A.4).

Moreover, if \(F=\mathrm {e}^{f(\cdot , X)} \in {\mathcal {M}}_{\mathrm {loc}}\), applying Proposition 3.1 in Criens et al. [6] it is also a uniformly integrable martingale if the following condition holds:

$$\begin{aligned} \int \limits _{0}^{T_*} \bigg ( c^{f}_{t} + \int \limits _{{\mathbb {R}^{d}}} \Big [ (|x|^{2} \wedge 1) + |x| \mathrm {e}^{x} {1}_{\{|x| > 1\}} \Big ] F^{f}_t({{{\text {d}}}{x}}) \bigg ) {{{\text {d}}}{t}}< C^{f}, \end{aligned}$$
(A.6)

for some constant \(C^{f} >0\). We first check the condition for the diffusion coefficient

$$\begin{aligned} \int \limits _{0}^{T_*} c^{f}_{t} {{\mathrm {d}}}t&= \int \limits _{0}^{T_*} \langle {\mathrm {D}}f(t, X_{t-}), c_{t} {\mathrm {D}}f(t, X_{t-}) \rangle {{\mathrm {d}}}t \le \int \limits _{0}^{T_*} \Vert c_{t}\Vert |{\mathrm {D}}f(t, X_{t-})|^2 {{\mathrm {d}}}t < C_{1}^{f}, \end{aligned}$$

which follows from (A.5) and the fact that \({\mathrm {D}}f(\cdot , X_{-})\) is bounded as a consequence of f being globally Lipschitz. As for the jump part, we have that

$$\begin{aligned} \int \limits _{0}^{T_*} \int \limits _{{\mathbb {R}}} (|x|^{2}&\wedge 1) F_t^{f} ({{\mathrm {d}}}x) {{\mathrm {d}}}t + \int \limits _{0}^{T_*} \int \limits _{|x|>1} |x| \mathrm {e}^{x} F_t^{f} ({{\mathrm {d}}}x) {{\mathrm {d}}}t \\&\mathop {=}\limits ^{(A.1)} \int \limits _{0}^{T_*} \int \limits _{{\mathbb {R}^{d}}} (|f(t, X_{t-}+x)-f(t, X_{t-})|^{2} \wedge 1) F_t({{\mathrm {d}}}x) {{\mathrm {d}}}t\\&\qquad \quad \qquad \qquad + \int \limits _{0}^{T_*} \int \limits _{{\mathbb {R}^{d}}} {1}_{\{|f(t,X_{t-}+x)-f(t,X_{t-})|>1\}} \\&\qquad \,\, \times |f(t, X_{t-}+x) - f(t, X_{t-})| \, \mathrm {e}^{f(t, X_{t-}+x) - f(t, X_{t-})} F_t({{\mathrm {d}}}x) {{\mathrm {d}}}t\\&\le \int \limits _{0}^{T_*} \int \limits _{{\mathbb {R}^{d}}} (K^{2} |x|^{2} \wedge 1) F({{\mathrm {d}}}x) {{\mathrm {d}}}t + \int \limits _{0}^{T_*} \int \limits _{K |x|> 1} K |x| \mathrm {e}^{K |x|} F^{f} ({{\mathrm {d}}}x) {{\mathrm {d}}}t < C_{2}^{f}, \end{aligned}$$

using again the Lipschitz property and (A.4). \(\square \)

Next, we provide the representation of Y as a stochastic exponential.

Lemma A.3

Let X be an \({\mathbb {R}^{d}}\)-valued semimartingale with absolutely continuous characteristics \((B,C,\nu )\) and let \(f:{\mathbb {R}}_{+} \times {\mathbb {R}^{d}}\rightarrow {\mathbb {R}}_{+}\) be a function of class \(C^{1,2} ({\mathbb {R}}_{+} \times {\mathbb {R}^{d}})\). Define a real-valued semimartingale Y via (A.2). If \(Y \in {\mathcal {M}}_{\mathrm {loc}}\), then it can be written as

$$ Y = {\mathcal {E}}\big ( {\mathrm {D}}f(\cdot , X_{-}) \cdot X^{c} + W(\cdot , x) *(\mu ^{X} - \nu ) \big ), $$

where \(X^{c}\) is the continuous martingale part of X, \(\mu ^{X}\) is the random measure of jumps of X with compensator \(\nu \) and

$$ W(\cdot , x):= \mathrm {e}^{f(\cdot , X_{-} +x) - f(\cdot , X_{-})} -1. $$

Proof

Theorem 2.19 in Kallsen and Shiryaev [19] yields that

$$ \mathrm {e}^{f(\cdot , X)} = {\mathcal {E}}\left( f(\cdot , X)^{c} + (\mathrm {e}^{x}-1) *(\mu ^{f}-\nu ^{f})\right) , $$

using that \(f(\cdot , X)\) is quasi-left continuous since X is also quasi-left continuous. Here \(f(\cdot , X)^{c}\) denotes the continuous martingale part of \(f(\cdot , X)\) and \(\mu ^{f}\) its random measure of jumps. The result now follows using the form of the local characteristics \(c^f, F^f\) of the process \(f(\cdot ,X)\) in (A.1); see also the proof of Corollary A.6 in Goll and Kallsen [13].

Lemma A.4

Let X be an \({\mathbb {R}^{d}}\)-valued semimartingale with absolutely continuous characteristics (bcF) with respect to the truncation function h. Let \(f:{\mathbb {R}}_{+} \times {\mathbb {R}^{d}}\rightarrow {\mathbb {R}}_{+}\) be a function of class \(C^{1,2}({\mathbb {R}}_{+} \times {\mathbb {R}^{d}})\) and globally Lipschitz. Assume that conditions (A.3), (A.4) and (A.5) are satisfied.

Define the probability measure \({\mathbb {P}}'\sim {\mathbb {P}}\) via

$$ \frac{{{\mathrm {d}}}{\mathbb {P}}'}{{{\mathrm {d}}}{\mathbb {P}}}\Big |_{{\mathcal {F}}_\cdot } := \mathrm {e}^{f(\cdot , X)}\,. $$

Then, the \({\mathbb {P}}'\)-characteristics of the semimartingale X are absolutely continuous and provided by \((b',c',F')\), where

$$\begin{aligned} b'_t&= b_t + c_t \beta _t + \int \limits _{{\mathbb {R}^{d}}} ( Y_t(x) - 1 ) h(x) F_t({{\mathrm {d}}}x) \\ c'_t&= c_t \\ F'_t({{\mathrm {d}}}x)&= Y_t(x) F_t({{\mathrm {d}}}x), \end{aligned}$$

with \(\beta _t = {\mathrm {D}}f(t,X_{t-})\) and \(Y_t(x)= \mathrm {e}^{f(t,X_{t-}+x) - f(t,X_{t-})}\), for \(t\in {\mathbb {R}}_{+}\) and \(x\in {\mathbb {R}^{d}}\).

Proof

The result follows directly from the previous lemma and Proposition 2.6 in Kallsen [18]. \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Glau, K., Grbac, Z., Papapantoleon, A. (2016). A Unified View of LIBOR Models. In: Kallsen, J., Papapantoleon, A. (eds) Advanced Modelling in Mathematical Finance. Springer Proceedings in Mathematics & Statistics, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-45875-5_18

Download citation

Publish with us

Policies and ethics