Abstract
In frictionless markets there typically exists a portfolio whose long-term growth rate of wealth almost surely dominates that of any other portfolio. In this note we show that this continues to hold in a Black-Scholes-type market with proportional transaction costs.We heavily rely on results from Gerhold et al. (Financ Stochast 17:325–354 2013 [7]), who determine a portfolio maximizing the expected long-term growth rate of wealth in the same setup.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Borodin, A., Salminen, P.: Handbook of Brownian motion: Facts and Formulae. Springer (2002)
Choi, J., Sirbu, M., Zitkovic, G.: Shadow prices and well-posedness in the problem of optimal investment and consumption with transaction costs. SIAM J. Control Optim. 51, 4414–4449 (2013)
Constantinides, G.: Capital market equilibrium with transaction costs. J. Political Econ. 842–862 (1986)
Cvitanić, J., Karatzas, I.: Hedging and portfolio optimization under transaction costs: a martingale approach. Math. Financ. 6, 133–165 (1996)
Gerhold, S., Guasoni, P., Muhle-Karbe, J., Schachermayer, W.: Transaction costs, trading volume, and the liquidity premium. Financ. Stochast. 18, 1–37 (2014)
Gerhold, S., Muhle-Karbe, J., Schachermayer, W.: Asymptotics and duality for the Davis and Norman problem. Stochastics 84, 625–641 (2012)
Gerhold, S., Muhle-Karbe, J., Schachermayer, W.: The dual optimizer for the growth-optimal portfolio under transaction costs. Financ. Stochast. 17, 325–354 (2013)
Goll, T., Kallsen, J.: A complete explicit solution to the log-optimal portfolio problem. Ann. Appl. Probab. 13, 774–799 (2003)
Guasoni, P., Muhle-Karbe, J.: Long horizons, high risk aversion, and endogenous spreads. Math. Financ. 25, 724–753 (2015)
Herczegh, A., Prokaj, V.: Shadow price in the power utility case. Ann. Appl. Probab. 25, 2671–2707 (2015)
Jouini, E., Kallal, H.: Martingales and arbitrage in securities markets with transaction costs. J. Econ. Theory 66, 178–197 (1995)
Kallsen, J., Muhle-Karbe, J.: On using shadow prices in portfolio optimization with transaction costs. Ann. Appl. Probab. 20, 1341–1358 (2010)
Kallsen, J., Muhle-Karbe, J.: The General structure of optimal investment and consumption with small transaction costs. Math. Financ. (2013)
Kallsen, J., Muhle-Karbe, J.: Option pricing and hedging with small transaction costs. Math. Financ. 25, 702–723 (2015)
Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Financ. Stochast. 11, 447–493 (2007)
Karatzas, I., Lehoczky, J., Shreve, S., Xu, G.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29, 702–730 (1991)
Karatzas, I., Shreve, S.: Methods of Mathematical Finance. Springer, Berlin (1998)
Korn, R., Schäl, M.: On value preserving and growth optimal portfolios. Math. Methods Oper. Res. 50, 189–218 (1999)
Kühn, C., Stroh, M.: Optimal portfolios of a small investor in a limit order market: a shadow price approach. Math. Financ. Econ. 3, 45–72 (2010)
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin, third edition (1999)
Taksar, M., Klass, M., Assaf, D.: A diffusion model for optimal portfolio selection in the presence of brokerage fees. Math. Oper. Res. 13, 277–294 (1988)
Acknowledgements
The authors thank Johannes Muhle-Karbe for fruitful comments and discussions. Moreover, they acknowledge financial support through DFG-Sachbeihilfe KA 1682/4-1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Feodoria, MR., Kallsen, J. (2016). Almost Surely Optimal Portfolios Under Proportional Transaction Costs. In: Kallsen, J., Papapantoleon, A. (eds) Advanced Modelling in Mathematical Finance. Springer Proceedings in Mathematics & Statistics, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-45875-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-45875-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45873-1
Online ISBN: 978-3-319-45875-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)