Skip to main content

Almost Surely Optimal Portfolios Under Proportional Transaction Costs

  • Conference paper
  • First Online:
Advanced Modelling in Mathematical Finance

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 189))

  • 1523 Accesses

Abstract

In frictionless markets there typically exists a portfolio whose long-term growth rate of wealth almost surely dominates that of any other portfolio. In this note we show that this continues to hold in a Black-Scholes-type market with proportional transaction costs.We heavily rely on results from Gerhold et al. (Financ Stochast 17:325–354 2013 [7]), who determine a portfolio maximizing the expected long-term growth rate of wealth in the same setup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Borodin, A., Salminen, P.: Handbook of Brownian motion: Facts and Formulae. Springer (2002)

    Google Scholar 

  2. Choi, J., Sirbu, M., Zitkovic, G.: Shadow prices and well-posedness in the problem of optimal investment and consumption with transaction costs. SIAM J. Control Optim. 51, 4414–4449 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Constantinides, G.: Capital market equilibrium with transaction costs. J. Political Econ. 842–862 (1986)

    Google Scholar 

  4. Cvitanić, J., Karatzas, I.: Hedging and portfolio optimization under transaction costs: a martingale approach. Math. Financ. 6, 133–165 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gerhold, S., Guasoni, P., Muhle-Karbe, J., Schachermayer, W.: Transaction costs, trading volume, and the liquidity premium. Financ. Stochast. 18, 1–37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gerhold, S., Muhle-Karbe, J., Schachermayer, W.: Asymptotics and duality for the Davis and Norman problem. Stochastics 84, 625–641 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Gerhold, S., Muhle-Karbe, J., Schachermayer, W.: The dual optimizer for the growth-optimal portfolio under transaction costs. Financ. Stochast. 17, 325–354 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goll, T., Kallsen, J.: A complete explicit solution to the log-optimal portfolio problem. Ann. Appl. Probab. 13, 774–799 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guasoni, P., Muhle-Karbe, J.: Long horizons, high risk aversion, and endogenous spreads. Math. Financ. 25, 724–753 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Herczegh, A., Prokaj, V.: Shadow price in the power utility case. Ann. Appl. Probab. 25, 2671–2707 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jouini, E., Kallal, H.: Martingales and arbitrage in securities markets with transaction costs. J. Econ. Theory 66, 178–197 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kallsen, J., Muhle-Karbe, J.: On using shadow prices in portfolio optimization with transaction costs. Ann. Appl. Probab. 20, 1341–1358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kallsen, J., Muhle-Karbe, J.: The General structure of optimal investment and consumption with small transaction costs. Math. Financ. (2013)

    Google Scholar 

  14. Kallsen, J., Muhle-Karbe, J.: Option pricing and hedging with small transaction costs. Math. Financ. 25, 702–723 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Financ. Stochast. 11, 447–493 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karatzas, I., Lehoczky, J., Shreve, S., Xu, G.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29, 702–730 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karatzas, I., Shreve, S.: Methods of Mathematical Finance. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  18. Korn, R., Schäl, M.: On value preserving and growth optimal portfolios. Math. Methods Oper. Res. 50, 189–218 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kühn, C., Stroh, M.: Optimal portfolios of a small investor in a limit order market: a shadow price approach. Math. Financ. Econ. 3, 45–72 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin, third edition (1999)

    Book  MATH  Google Scholar 

  21. Taksar, M., Klass, M., Assaf, D.: A diffusion model for optimal portfolio selection in the presence of brokerage fees. Math. Oper. Res. 13, 277–294 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Johannes Muhle-Karbe for fruitful comments and discussions. Moreover, they acknowledge financial support through DFG-Sachbeihilfe KA 1682/4-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kallsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Feodoria, MR., Kallsen, J. (2016). Almost Surely Optimal Portfolios Under Proportional Transaction Costs. In: Kallsen, J., Papapantoleon, A. (eds) Advanced Modelling in Mathematical Finance. Springer Proceedings in Mathematics & Statistics, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-45875-5_14

Download citation

Publish with us

Policies and ethics