Advertisement

Human Adaptation to Life at High Altitude

  • Gustavo F. GonzalesEmail author
  • Dulce E. Alarcón-Yaquetto
  • Alisson Zevallos-Concha
Chapter
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 16)

Abstract

Living at high altitude (HA) represents a daily challenge that over two hundred million people worldwide have to face. Populations living at HA are distributed mainly in Asia, Africa and America and they live in these settling with different periods of antiquity and evolution. Permanent life at HA is associated with a pathology unique in these places known as chronic mountain sickness or lack of adaptation to live at HA, which is characterized by excessive erythrocytosis. It has been reported that oxidative stress is increased at people acutely and chronically exposed at HA hypoxia. This may explain some features of the adaptation of highlanders. The present review summarizes findings related to different strategies of adaptation in populations living at HA. As features of human adaptation at HA we review data related to birth weight, gestational age, preeclampsia, hemoglobin and chronic mountain sickness in populations at HA and how gene evolution drives adaptation.

Keywords

High altitude Hypoxia Chronic mountain sickness Monge’s disease Himalayas Andes 

References

  1. 1.
    Jha AR, Zhou D, Brown CD et al (2015) Shared genetic signals of hypoxia adaptation in Drosophila and in high-altitude human populations. Mol Biol Evol 2015 pii:msv248Google Scholar
  2. 2.
    White TD, Asfaw B, DeGusta D et al (2003) Pleistocene Homo sapiens from middle Awash, Ethiopia. Nature 423:742–747PubMedCrossRefGoogle Scholar
  3. 3.
    McDougall I, Brown FH, Fleagle JG (2005) Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433:733–736PubMedCrossRefGoogle Scholar
  4. 4.
    Fleagle JG, Assefa Z, Brown FH, Shea JJ (2008) Paleoanthropology of the Kibish formation, southern Ethiopia: introduction. J Hum Evol 55:360–365PubMedCrossRefGoogle Scholar
  5. 5.
    Huerta-Sánchez E, Jin X, Bianba Z et al (2014) Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 7513:194–197CrossRefGoogle Scholar
  6. 6.
    Qi X, Cui C, Peng Y et al (2013) Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the Tibetan plateau. Mol Biol Evol 30:1761–1778PubMedCrossRefGoogle Scholar
  7. 7.
    Goebel T, Waters MR, O’Rourke DH (2008) The late Pleistocene dispersal of modern humans in the Americas. Science 319:1497–1502PubMedCrossRefGoogle Scholar
  8. 8.
    Reich D, Patterson N, Campbell D et al (2012) Reconstructing native American population history. Nature 488:370–374PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rothhammer F, Llop E, Carvallo P, Moraga M (2001) Origin and evolutionary relationships of native Andean populations. High Alt Med Biol 2:227–233PubMedCrossRefGoogle Scholar
  10. 10.
    Rothhammer F, Dillehay TD (2009) The late Pleistocene colonization of South America: an interdisciplinary perspective. Ann Hum Genet 73:540–549PubMedCrossRefGoogle Scholar
  11. 11.
    Rademaker K, Hodgins G, Moore K et al (2014) Paleoindian settlement of the high-altitude Peruvian Andes. Science 346:466–469PubMedCrossRefGoogle Scholar
  12. 12.
    Homburger JR, Moreno-Estrada A, Gignoux CR et al (2015) Genomic insights into the ancestry and demographic history of South America. PLoS Genet 12:e1005602CrossRefGoogle Scholar
  13. 13.
    Rothhammer F, Fuentes-Guajardo M, Chakraborty R et al (2015) Neonatal variables, altitude of residence and Aymara ancestry in northern Chile. PLoS One 10:e0121834PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hartinger S, Tapia V, Carrillo C et al (2006) Birth weight at high altitudes in Peru. Int J Gynaecol Obstet 93:275–281PubMedCrossRefGoogle Scholar
  15. 15.
    Gonzales GF, Chaupis D (2015) Higher androgen bioactivity is associated with excessive erythrocytosis and chronic mountain sickness in Andean highlanders: a review. Andrologia 47:729–743PubMedCrossRefGoogle Scholar
  16. 16.
    Aksoy AN, Batmaz G, Dane B et al (2015) Effects of altitude changes on Doppler flow parameters for uterine, umbilical, and mid-cerebral arteries in term pregnancy: a pilot study. J Turk Ger Gynecol Assoc 16:237–240PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Galan HL, Rigano S, Chyu J et al (2000) Comparison of low- and high-altitude Doppler velocimetry in the peripheral and central circulations of normal fetuses. Am J Obstet Gynecol 183:1158–1661PubMedCrossRefGoogle Scholar
  18. 18.
    Beall CM, Decker MJ, Brittenham GM et al (2002) An Ethiopian pattern of human adaptation to high-altitude hypoxia. Proc Natl Acad Sci U S A 99:17215–17218PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Xing G, Qualls C, Huicho L et al (2008) Adaptation and mal-adaptation to ambient hypoxia; Andean, Ethiopian and Himalayan patterns. PLoS One 3:e2342Google Scholar
  20. 20.
    Aldenderfer MS (2003) Moving up in the world. Am Sci 91:542–550CrossRefGoogle Scholar
  21. 21.
    Zhao M, Kong QP, Wang HW et al (2009) Mitochondrial genome evidence reveals successful late paleolithic settlement on the Tibetan plateau. Proc Natl Acad Sci U S A 106:21230–21235PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gonzales GF (2007) Peruvian contributions to the study on human reproduction at high altitude: from the chronicles of the Spanish conquest to the present. Resp Physiol Neurobiol 158:172–179CrossRefGoogle Scholar
  23. 23.
    Wouters BG, Koritzinsky M (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 11:851–864CrossRefGoogle Scholar
  24. 24.
    Bigham AW, Mao X, Mei R et al (2009) Identifying positive selection candidate loci for high-altitude adaptation in Andean populations. Hum Genomics 4:79–90PubMedPubMedCentralGoogle Scholar
  25. 25.
    BighamAW KM, Leon-Velarde F et al (2010) Angiotensin-converting enzyme genotype and arterial oxygen saturation at high altitude in Peruvian Quechua. High Alt Med Biol 9:167–178CrossRefGoogle Scholar
  26. 26.
    Beall CM, Cavalleri GL, Deng L et al (2010) Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A 107:11459–11464PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Simonson TS, Yang Y, Huff CD et al (2010) Genetic evidence for high-altitude adaptation in Tibet. Science 329:72–75PubMedCrossRefGoogle Scholar
  28. 28.
    Yi X, Liang Y, Huerta-Sanchez E et al (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329:75–78PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Alkorta-Aranburu G, Beall CM, Witonsky DB et al (2012) The genetic architecture of adaptations to high altitude in Ethiopia. PLoS Genet 8:e1003110PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Scheinfeldt LB, Soi S, Thompson S et al (2012) Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol 13:1–10CrossRefGoogle Scholar
  31. 31.
    Huerta-Sánchez E, Degiorgio M, Pagani L et al (2013) Genetic signatures reveal high-altitude adaptation in a set of Ethiopian populations. Mol Biol Evol 30:1877–1888PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zhou D, Udpa N, Ronen R et al (2013) Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in Andean highlanders. Am J Hum Genet 93:452–462PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Eichstaedt CA, Antão T, Pagani L et al (2014) The Andean adaptive toolkit to counteract high altitude maladaptation: genome-wide and phenotypic analysis of the Collas. PLoSOne 9:e93314CrossRefGoogle Scholar
  34. 34.
    Jeong C, Alkorta-Aranburu G, Basnyat B et al (2014) Admixture facilitates genetic adaptations to high altitude in Tibet. Nat Commun 5:3281–3289PubMedPubMedCentralGoogle Scholar
  35. 35.
    Udpa N, Ronen R, Zhou D et al (2014) Whole genome sequencing of Ethiopian highlanders reveals conserved hypoxia tolerance genes. Genome Biol 15:36–45CrossRefGoogle Scholar
  36. 36.
    MacInnis MJ, Rupert JL (2011) Altitude adaptation, positive selection, and Himalayan genomics. High Alt Med Biol 12:133–139PubMedCrossRefGoogle Scholar
  37. 37.
    Bhandari S, Zhang X, Cui C et al (2015) Genetic evidence of recent Tibetan ancestry to Sherpas in the Himalayan region. Sci Rep 5:16249–16256PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Wu TY, Liu FY, Ouzhou L et al (2013) A genetic adaptive pattern: low hemoglobin concentration in the Himalayan highlanders. Zhongguo Ying Yong Sheng 29:481–493Google Scholar
  39. 39.
    Wu T, Wang X, Wei C et al (2005) Hemoglobin levels in Qinghai-Tibet: different effects of gender for Tibetans and Hans. J Appl Physiol 98:598–604PubMedCrossRefGoogle Scholar
  40. 40.
    Gonzales GF, Tapia V, Gasco M, Carrillo C (2011) Maternal hemoglobin in Peru: regional differences and its association with adverse perinatal outcomes. Rev Peru Med Exp Salud Publica 28:484–491PubMedCrossRefGoogle Scholar
  41. 41.
    León-Velarde F, Maggiorini M, Reeves JT et al (2005) Consensus statement on chronic and subacute high altitude diseases. High Alt Med Biol 6:147–157PubMedCrossRefGoogle Scholar
  42. 42.
    Su J, Li Z, Cui S et al (2015) The local HIF-2α/EPO pathway in the bone marrow is associated with excessive erythrocytosis and microvessel density in chronic mountain sickness. High Alt Med Biol 16:318–330PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Julian CG, Vargas E, Gonzales M et al (2013) Sleep-disordered breathing and oxidative stress in preclinical chronic mountain sickness (excessive erythrocytosis). Respir Physiol Neurobiol 186:188–196PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rexhaj E, Rimoldi SF, Pratali L et al (2015) Sleep disordered breathing and vascular function in patients with chronic mountain sickness and healthy high-altitude dwellers. Chest 10:1378/chest.15-1450Google Scholar
  45. 45.
    Peacock AJ (1998) ABC of oxygen: oxygen at high altitude. Brit Med J 317:1063–1066PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Frisancho AR (2013) Developmental functional adaptation to high altitude: review. Am J Human Biol 25:151–168CrossRefGoogle Scholar
  47. 47.
    Jefferson JA, Simoni J, Escudero E et al (2004) Increased oxidative stress following acute and chronic high altitude exposure. High Alt Med Biol 5:61–69PubMedCrossRefGoogle Scholar
  48. 48.
    Dosek A, Ohno H, Acs Z et al (2007) High altitude and oxidative stress. Respir Physiol Neurobiol 158:128–131PubMedCrossRefGoogle Scholar
  49. 49.
    Vij AG, Dutta R, Satija NK (2005) Acclimatization to oxidative stress at high altitude. High Alt Med Biol 6:301–310PubMedCrossRefGoogle Scholar
  50. 50.
    Hakim IA, Harris R, Garland L et al (2012) Gender difference in systemic oxidative stress and antioxidant capacity in current and former heavy smokers. Cancer Epidemiol Biomark 21:2193–2200CrossRefGoogle Scholar
  51. 51.
    Milledge JS (2013) Renin-aldosterone system. In: Lahiri S, West JB (eds) High altitude and man, Springer clinical physiology series. American Physiological Society, Bethesda, pp 53–56Google Scholar
  52. 52.
    Askew EW (2002) Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology 180:107–119PubMedCrossRefGoogle Scholar
  53. 53.
    Shi QH, Wei W, Ran JH et al (2015) Hydrogen therapy reduces oxidative stress-associated risks following acute and chronic exposure to high-altitude environment. Biomed Environ Sci 28:239–241PubMedGoogle Scholar
  54. 54.
    Sakamoto R, Okumiya K, Wang H et al (2015) Oxidized low density lipoprotein among the elderly in Qinghai-Tibet plateau. Wilderness Environ Med 26:343–349PubMedCrossRefGoogle Scholar
  55. 55.
    Hu XQ, Huang X, Xiao D et al (2016) Direct effect of chronic hypoxia in suppressing large conductance Ca2+-activated K+ channel activity in ovine uterine arteries via increasing oxidative stress. J Physiol 594:343–356PubMedCrossRefGoogle Scholar
  56. 56.
    Bailey DM, Rimoldi SF, Rexhaj M et al (2013) Oxidative-nitrosative stress and systemic vascular function in highlanders with and without exaggerated hypoxemia. Chest 143:444–451PubMedCrossRefGoogle Scholar
  57. 57.
    Cano I, Selivanov V, Gomez-Cabrero D et al (2014) Oxygen pathway modeling estimates high reactive oxygen species production above the highest permanent human habitation. PLoS One 9:e111068PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Costa LE, Llesuy S, Boveris A (1988) Active oxygen species in the liver of rats submitted to chronic hypobaric hypoxia. Am J Physiol 255:C123–C129PubMedGoogle Scholar
  59. 59.
    Jefferson JA, Escudero E, Johnson RJ et al (2014) Increased oxidative stress at altitude. Chest 145:423–431PubMedCrossRefGoogle Scholar
  60. 60.
    Gonzales GF, Tapia V, Gasco M (2014) Correcting haemoglobin cut-offs to define anaemia in high-altitude pregnant women in Peru reduces adverse perinatal outcomes. Arch Gynecol Obstet 290:65–74PubMedCrossRefGoogle Scholar
  61. 61.
    Salama SA, Omar HA, Maghrabi IA et al (2014) Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats. Toxicol Appl Pharmacol 274:1–6PubMedCrossRefGoogle Scholar
  62. 62.
    Valverde G, Zhou H, Lippold S et al (2015) A novel candidate region for genetic adaptation to high altitude in Andean populations. PLoS One 10:e0125444PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Scott GR, Elogio TS, Lui MA et al (2015) Adaptive modifications of muscle phenotype in high-altitude deer mice are associated with evolved changes in gene regulation. Mol Biol Evol 32:1962–1976PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ge RL, Simonson TS, Gordeuk V et al (2015) Metabolic aspects of high-altitude adaptation in Tibetans. Exp Physiol 100:1247–1255PubMedCrossRefGoogle Scholar
  65. 65.
    Beall CM, Laskowski D, Erzurum SC (2012) Nitric oxide in adaptation to altitude. Free Radic Biol Med 52:1123–1134PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lewis NC, Bailey DM, Dumanoir GR et al (2014) Conduit artery structure and function in lowlanders and highlanders: relationships with oxidative stress and role of sympathoexcitation. J Physiol 592:1009–1024PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Pandey P, Qadar Pasha MA (2012) Oxidative stress at high altitude: genotype–phenotype correlations. Adv Genomics Gen 4:29–43Google Scholar
  68. 68.
    Kumar H, Choi DK (2015) Hypoxia inducible factor pathway and physiological adaptation: a cell survival pathway? Mediat Inflamm 2015:doi 584758Google Scholar
  69. 69.
    Negi PC, Asotra S, Vetri RK et al (2013) Epidemiological study of chronic mountain sickness in natives of Spiti Valley in the Greater Himalayas. High Alt Med Biol 14:220–229PubMedCrossRefGoogle Scholar
  70. 70.
    Sahota IS, Panwar NS (2013) Prevalence of chronic mountain sickness in high altitude districts of Himachal Pradesh. Indian J Occup Environ Med 17:94–100PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Jiang C, Chen J, Liu F et al (2014) Chronic mountain sickness in Chinese Han males who migrated to the Qinghai-Tibetan plateau: application and evaluation of diagnostic criteria for chronic mountain sickness. BMC Public Health 14:701–708PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Niermeyer S, Andrade MP, Vargas E, Moore LG (2015) Neonatal oxygenation, pulmonary hypertension, and evolutionary adaptation to high altitude. Pulm Circ 5:48–62PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Norboo T, Saiyed HN, Angchuk PT et al (2004) Mini review of high altitude health problems in Ladakh. Biomed Pharmacother 58:220–225PubMedCrossRefGoogle Scholar
  74. 74.
    Appenzeller O, Claydon VE, Gulli G et al (2006) Cerebral vasodilatation to exogenous NO is a measure of fitness for life at altitude. Stroke 37:1754–1758PubMedCrossRefGoogle Scholar
  75. 75.
    Weitz CA, Garruto RM, Chin CT (2015) Larger FVC and FEV1 among Tibetans compared to Han born and raised at high altitude. Am J Phys Anthropol doi. doi: 10.1002/ajpa.22873 Google Scholar
  76. 76.
    De Ferrari A, Miranda JJ, Gilman RH et al (2014) Prevalence, clinical profile, iron status, and subject-specific traits for excessive erythrocytosis in Andean adults living permanently at 3,825 meters above sea level. Chest 146:1327–1336PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Monge CC, Arregui A, León-Velarde F (1992) Pathophysiology and epidemiology of chronic mountain sickness. Int J Sports Med 13:S79–S81CrossRefGoogle Scholar
  78. 78.
    Gonzales GF, Rubio J, Gasco M (2013) Chronic mountain sickness is related with health status but not with hemoglobin at high altitudes. Respir Physiol Neurobiol 188:152–160PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Cole AM, Petousi N, Cavalleri GL, Robbins PA (2014) Genetic variation in SENP1 and ANP32D as predictors of chronic mountain sickness. High Alt Med Biol 15:497–499PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Xu J, Yang YZ, Tang F et al (2015) CYP17A1 and CYP2E1 variants associated with high altitude polycythemia in Tibetans at the Qinghai-Tibetan plateau. Gene 566:257–263PubMedCrossRefGoogle Scholar
  81. 81.
    Gonzales GF, Tapia V, Gasco M et al (2011) High serum zinc and testosterone are associated with excessive erythrocytosis in men at high altitudes. Endocrine 40:472–480PubMedCrossRefGoogle Scholar
  82. 82.
    Beall CM, Worthman CM, Stallings J et al (1992) Salivary testosterone concentration of Aymara men native to 3600 m. Ann Hum Biol 19:67–78PubMedCrossRefGoogle Scholar
  83. 83.
    Richard A, Rohrmann S, Zhang L et al (2014) Racial variation in sex steroid hormone concentration in black and white men: a meta-analysis. Andrology 2:428–435PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ackerman CM, Lowe LP, Lee H et al (2012) Ethnic variation in allele distribution of the androgen receptor CAG. J Androl 33:210–215PubMedCrossRefGoogle Scholar
  85. 85.
    Gonzales GF, Chung FA, Miranda S et al (2005) Heart mitochondrial nitric oxide synthase is upregulated in male rats exposed to high altitude (4340 m). Am J Physiol Heart Circ Physiol 288:H2568–H2573PubMedCrossRefGoogle Scholar
  86. 86.
    He J, Cui J, Wang R et al (2015) Exposure to hypoxia at high altitude (5380 m) for one year induces reversible effects on semen quality and reproductive hormone levels in young male adults. High Alt Med Biol 16:216–222PubMedCrossRefGoogle Scholar
  87. 87.
    Haas JD, Baker PT, Hunt EE (1977) The effects of high altitude on body size and composition of the newborn infant in southern Peru. Hum Biol 49:611–628PubMedGoogle Scholar
  88. 88.
    Ballew C, Haas JD (1986) Altitude differences in body composition among Bolivian newborns. Hum Biol 58:871–882PubMedGoogle Scholar
  89. 89.
    Khalid ME, Ali ME, Ali KZ (1997) Full-term birth weight and placental morphology at high and low altitude. Int J Gynecol Obstet 57:259–265CrossRefGoogle Scholar
  90. 90.
    Keyes LE, Armaza JF, Niermeyer S et al (2003) Intrauterine growth restriction, preeclampsia, and intrauterine mortality at high altitude in Bolivia. Pediat Res 54:20–25PubMedCrossRefGoogle Scholar
  91. 91.
    Moore LG, Young D, McCullough RE et al (2001) Tibetan protection from intrauterine growth restriction and reproductive loss at high altitude. Am J Hum Biol 13:635–644PubMedCrossRefGoogle Scholar
  92. 92.
    Zamudio S, Droma T, Norkyel KY et al (1993) Protection from intrauterine growth retardation in Tibetans at high altitude. Am J Phys Anthropol 91:215–224PubMedCrossRefGoogle Scholar
  93. 93.
    Levine LD, Gonzales GF, Tapia VL et al (2015) Preterm birth risk at high altitude in Peru. Am J Obstet Gynecol 91:210–218Google Scholar
  94. 94.
    Gonzales GF, Steenland K, Tapia VL (2009) Maternal hemoglobin level and fetal outcome at low and high altitudes. Am J Physiol Regul Integr Comp Physiol 297:R1477–R1485PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Gonzales GF, Tapia V, Fort AL (2012) Maternal and perinatal outcomes in second hemoglobin measurement in nonanemic women at first booking: effect of altitude of residence in Peru. Obstet Gynecol 2012:368571Google Scholar
  96. 96.
    Browne VA, Julian CG, Toledo-Jaldin L et al (2015) Uterine artery blood flow, fetal hypoxia and fetal growth. Philos Trans R Soc Lond Biol Sci 370:20140068CrossRefGoogle Scholar
  97. 97.
    Gonzales GF, Tapia V, Gasco M et al (2012) Association of hemoglobin values with adverse maternal outcomes among Peruvian populations living at different altitudes. Int J Gynaecol Obstet 117:134–139PubMedCrossRefGoogle Scholar
  98. 98.
    Bigham AW, Julian CG, Wilson MJ et al (2014) Maternal PRKAA1 and EDNRA genotypes are associated with birth weight, and PRKAA1 with uterine artery diameter and metabolic homeostasis at high altitude. Physiol Genomics 46:687–697PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Xu XH, Huang XW, Qun L et al (2014) Two functional loci in the promoter of EPAS1 gene involved in high-altitude adaptation of Tibetans. Sci Rep 4:7465–7474PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Julian CG, Vargas E, Browne VA et al (2012) Potential role for elevated maternal enzymatic antioxidant status in Andean protection against altitude-associated SGA. J Matern Fetal Neonatal Med 25:1233–1240PubMedCrossRefGoogle Scholar
  101. 101.
    Gonzales GF (1998) Demographic, reproductive, morbidity and mortality patterns at high altitude. Jap Soc Mountain Med 1998:174–179Google Scholar
  102. 102.
    Gonzales GF, Tapia V, Carrillo CE (2008) Stillbirth rates in Peruvian populations at high altitude. Int J Gynaecol Obstet 100:221–227PubMedCrossRefGoogle Scholar
  103. 103.
    Passano S (1983) Características de las gestantes y de los recién nacidos en Puno (3812 m) Doctoral thesis, Universidad Peruana Cayetano Heredia, Lima, PeruGoogle Scholar
  104. 104.
    Myres JE, Malan M, Shumway JB et al (2000) Haplogroup-associated differences in neonatal death and incidence of low birth weight at elevation: a preliminary assessment. Am J Obstet Gynecol 182:1599–1605PubMedCrossRefGoogle Scholar
  105. 105.
    Palmer SK, Moore LG, Young D et al (1999) Altered blood pressure during pregnancy and increased preeclampsia at high altitude (3100 meters) in Colorado. Am J Obstet Gynecol 180:1161–1168PubMedCrossRefGoogle Scholar
  106. 106.
    Yangzom Y, Qian L, Shan M et al (2008) Outcome of hospital deliveries of women living at high altitude: a study from Lhasa in Tibet. Acta Paediatr 9:317–321CrossRefGoogle Scholar
  107. 107.
    Orioli IM, Ribeiro MG, Castilla EE (2003) Clinical and epidemiological studies of ammniotic deformity, adhesion, and mutilation in a South American population. Am J Med Genet 118:135–145CrossRefGoogle Scholar
  108. 108.
    Garruto RM, Dutt JS (1983) Lack of prominent compensatory polycythemia in traditional native Andeans living at 4200 meters. Am J Phys Anthropol 61:355–366PubMedCrossRefGoogle Scholar
  109. 109.
    Simonson TS (2015) Altitude adaptation: a glimpse through various lenses. High Alt Med Biol 16:125–137PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Basang Z, Wang B, Li L et al (2015) HIF2A variants are associated with different levels of high-altitude hypoxia among native Tibetans. PLoS One 10:e0137956PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Bigham AW, Wilson MJ, Julian CG et al (2013) Andean and Tibetan patterns of adaptation to high altitude. Am J Hum Biol 25:190–197PubMedCrossRefGoogle Scholar
  112. 112.
    Chen Y, Jiang C, Luo Y et al (2014) An EPAS1 haplotype is associated with high altitude polycythemia in male Han Chinese at the Qinghai-Tibetan plateau. Wilder Environ Med 25:392–400CrossRefGoogle Scholar
  113. 113.
    Tekola-Ayele F, Adeyemo A, Chen G et al (2015) Novel genomic signals of recent selection in an Ethiopian population. Eur J Hum Genet 23:1085–1092PubMedCrossRefGoogle Scholar
  114. 114.
    Lundgrin EL, Janocha AJ, Koch CD et al (2013) Plasma hepcidin of Ethiopian highlanders with steady-state hypoxia. Blood 122:1989–1991PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Botcheva K (2014) p53 binding to human genome: crowd control navigation in chromatin context. Front Genet 5:447–453PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Jacovas VC, Rovaris DL, Peréz O et al (2015) Genetic variations in the TP53 pathway in native Americans suggest adaptation to the high altitudes of the Andes. PLoS One 10:e0137823PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Espinoza JR, Alvarez G, León-Velarde F et al (2014) Vascular endothelial growth factor-A is associated with chronic mountain sickness in the Andean population. High Alt Med Biol 15:146–154PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Tomar A, Malhotra S, Sarkar S (2015) Polymorphism profiling of nine high altitude relevant candidate gene loci in acclimatized sojourners and adapted natives. BMC Genet 16:112–119PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Mingji C, Onakpoya IJ, Perera R et al (2015) Relationship between altitude and prevalence of hypertension in Tibet: a systematic review. Heart 101:1054–1060PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Sherpa LY, Deji SH et al (2013) Prevalence of metabolic syndrome and common metabolic components in high altitude farmers and herdsmen at 3700 m in Tibet. High Alt Med Biol 14:37–44PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gustavo F. Gonzales
    • 1
    Email author
  • Dulce E. Alarcón-Yaquetto
    • 1
  • Alisson Zevallos-Concha
    • 1
  1. 1.Instituto de Investigaciones de la Altura, and Department of Biological and Physiological Sciences, Faculty of Sciences and PhilosophyUniversidad Peruana Cayetano HerediaDistrito de LimaPeru

Personalised recommendations