Mitochondrial Transfer by Intercellular Nanotubes

  • Viviana SanchezEmail author
  • Alicia Brusco
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 16)


Cell-to-cell communication is a critical requirement for the coordination of cell behavior in tissue homeostasis and the conservation of multicellular organisms. Among several types of intercellular communication, tunneling nanotubes (TNTs) were discovered no more than a decade ago but are now known to constitute intercellular bridges connecting distant cells. Over the last decade, research has shown TNTs to have structural and functional properties which vary across cell types. TNTs permit cell-to-cell communication on the basis of membrane continuity between connected cells and are capable of transferring various types of intracellular components including calcium ions, cytoplasmic molecules and different types of organelles. In this chapter, we will describe the different mechanisms of TNT formation, their heterogeneous composition and their functional roles in physiological and pathological processes. In this context, we also discuss the importance of mitochondria transfer from stem cells to recipient cells with nonfunctional mitochondria, which results in a significant improvement in aerobic respiration. The transfer of healthy mitochondria through TNTs may rescue damaged cells and thus constitute an alternative therapeutic approach for pathologies involving oxidative stress.


Tunneling nanotubes Intercellular transfer Mitochondria Mitochondrial transfer Intercellular communication 



The authors would like to thank Dr. N. Villalba, Dr. L. Fiore, Dr. R.J. Gelpi, Dr. A. Boveris and Dr. J.J. Poderoso for authorizing the use of photomicrographs obtained in ongoing collaborative work.


  1. 1.
    Kumar N, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388CrossRefPubMedGoogle Scholar
  2. 2.
    Denzer K, Kleijmeer MJ, Heijnen HF et al (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 19:3365–3374Google Scholar
  3. 3.
    Ramirez-Weber FA, Kornberg TB (2000) Signaling reaches to new dimensions in Drosophila imaginal discs. Cell 103:189–192CrossRefPubMedGoogle Scholar
  4. 4.
    Rustom A, Saffrich R, Markovic I et al (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010CrossRefPubMedGoogle Scholar
  5. 5.
    Gerdes H-H, Bukoreshtliev NV, Barroso JF (2007) Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 581:2194–2201CrossRefPubMedGoogle Scholar
  6. 6.
    Chinnery HR, Pearlman E, Mc Menamin PG (2008) Cutting edge: membrane nanotubes in vivo. A feature of MHC class II+ cells in the mouse cornea. J Immunol 180:5779–5783CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gerdes H-H, Rustom A, Wang X (2013) Tunneling nanotubes, an emerging intercellular communication route in development. Mech Develop 130:381–387CrossRefGoogle Scholar
  8. 8.
    Seyed-Razavi Y, Hickey MJ, Zuffová L et al (2013) Membrane nanotubes in myeloid cells in adult mouse cornea represent a novel mode of immune cells interaction. Immunol Cell Biol 91:89–95CrossRefPubMedGoogle Scholar
  9. 9.
    Lou E, Fujisawa S, Barlas A et al (2012) Tunneling nanotubes: a new paradigm for studying intercellular communication and therapeutics in cancer. Commun Integr Biol 5:399–403CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Astanina K, Koch M, Jüngst C et al (2015) Lipid droplets as a novel cargo to tunneling nanotubes in endotelial cells. Sci Rep 5:11453. doi: 10.1038/srep11453 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sowinski S, Jolly C, Berninghausen O et al (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 10:211–219CrossRefPubMedGoogle Scholar
  12. 12.
    Abounit S, Zurzolo C (2012) Wiring through tunneling nanotubes: from electrical signals to organelle transfer. J Cell Sci 125:1089–1098CrossRefPubMedGoogle Scholar
  13. 13.
    Lokar M, Iglic A, Veranic P (2010) Protruding membrane nanotubes: attachment of tubular protrusions to adjacent cells by several anchoring junctions. Protoplasma 246:81–87CrossRefPubMedGoogle Scholar
  14. 14.
    Önfelt B, Hedvetzki S, Benninger RKP et al (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 177:8476–8483CrossRefPubMedGoogle Scholar
  15. 15.
    Schiller C, Diakopoulos KN, Rohwedder I et al (2013) LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation. J Cell Sci 126:767–777CrossRefPubMedGoogle Scholar
  16. 16.
    Smith IF, Shuai J, Parker I (2011) Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. Biophys J 100:L37–L39CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Watkins SC, Salter RD (2005) Functional connectivity between immune cells mediated by tunneling nanotubes. Immunity 23:309–318CrossRefPubMedGoogle Scholar
  18. 18.
    Koyanagi M, Brandes RP, Haendeler J et al (2005) Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res 96:1039–1041CrossRefPubMedGoogle Scholar
  19. 19.
    Bernardo ME, Locatelli F, Fibbe WE (2009) Mesenchymal stromal cells. Ann NY Acad Sci 1176:101–117CrossRefPubMedGoogle Scholar
  20. 20.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  21. 21.
    Maherali N, Sridharan R, Xie W et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70CrossRefPubMedGoogle Scholar
  22. 22.
    Freund D, Bauer N, Boxberger S et al (2006) Polarization of human hematopoietic progenitors during contact with multipotent mesenchymal stromal cells: effects on proliferation and clonogenicity. Stem Cell Dev 15:815–829CrossRefGoogle Scholar
  23. 23.
    Wang Y, Cui J, Sun X, Zhang Y (2011) Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 18:732–742CrossRefPubMedGoogle Scholar
  24. 24.
    Ding X, Ma M, Teng J et al (2015) Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure. Oncotarget 6:24178–24191CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Polak R, de Rooij B, Pieters R et al (2015) B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment. Blood 126:2404–2414CrossRefPubMedGoogle Scholar
  26. 26.
    Chauveau A, Aucher A, Eissmann P et al (2010) Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells. Proc Natl Acad Sci U S A 107:5545–5550CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Vidulescu C, Clejan S, O’Connor KC, (2004) Vesicle traffic through intercellular bridges in human prostate cancer cells. J Cell Mol Med 8:388–396CrossRefPubMedGoogle Scholar
  28. 28.
    Pasquier J, Guerrouahen BS, Al Thawadi H et al (2013) Preferential transfer of mitochondria from endothelialto cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med 10:11:94Google Scholar
  29. 29.
    Thayanithy V, Dickson EL, Steer C et al (2014) Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes. Transl Res 164:359–365CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dvash E, Rubistein M. (2016) A surprising mediator of oxidative DNA damage. Cell Cycle doi: 10.1080/15384101.2016.1144989 Google Scholar
  31. 31.
    Andreazza AC, Wang J-F, Salmasi F et al (2013) Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. J Neurochem 127:555–561CrossRefGoogle Scholar
  32. 32.
    Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK et al (2013) Immnology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Devel Immunol 708659.
  33. 33.
    Mir F, Lee D, Ray H, Sadiq SA (2014) CSF isoprostane levels are a biomarker of oxidative stress in multiple sclerosis. Neurol Neuroimmunol Neuroinflamation 1:21. doi: 10.1212/NXI.0000000000000021 CrossRefGoogle Scholar
  34. 34.
    Engel P (2014) Does metabolic failure at the synapse cause Alzheimer’s disease? Med Hypoth 83:802–808CrossRefGoogle Scholar
  35. 35.
    Ma Y, Bai RK, Trieu R, Wong LJ (2010) Mitochondrial dysfunction in human breast cancer cells and their transmitochondrial cybrids. Biochim Biophys Acta 1797:29–37CrossRefPubMedGoogle Scholar
  36. 36.
    Ernster L (1993) Lipid peroxidation in biological membranes: Mechanisms and implications. In: Yagi K (ed) Active Oxygen, Lipid Peroxides and Antioxidants. CRC Press, Boca Raton, pp 1–38Google Scholar
  37. 37.
    Lenaz G, Bovian C, Formiggini G et al (1999) Mitochondria, oxidative stress, and Antioxidant defences. Acta Biochim Polonica 46:1–21Google Scholar
  38. 38.
    Kaipparettu BA, Ma Y, Park JH et al (2013) Crosstalk from non-cancerous mitochondria can inhibit tumor properties of metastatic cells by suppressing oncogenic pathways. PLoS One 8:e61747. doi: 10.1371/journal.pone.0061747 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Spees JL, Olson SD, Whitney MJ et al (2006) Mitochondrial transfer among cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 103:1283–1288CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Domhan S, Ma L, Tai A et al (2011) Intercellular communication by exchange of cytoplasamic material via tunneling nantotube like estructures in primary human renal epithelial cells. PLoS One 6:e21283. doi: 10.1371/journal.pone.0021283 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Liu K, Ji K, Guo L et al (2014) Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure mediated mitochondrial transfer. Microvasc Res 92:10–18CrossRefPubMedGoogle Scholar
  42. 42.
    Han H, Hu J, Yan Q et al (2016) Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Molec Med Rep 13:1517–1524Google Scholar
  43. 43.
    Kadiu I, Gendelman H (2011) Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection. J Neuroimmune Pharmacol 6:658–675CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Arkwright P, Luchetti F, Tour J et al (2010) Fas stimulation of T-lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes. Cell Res 20:72–88CrossRefPubMedGoogle Scholar
  45. 45.
    Gousset K, Schiff E, Langevin C et al (2009) Prions hijack tunneling nanotubes for intercellular spread. Nat Cell Biol 11:328–336CrossRefPubMedGoogle Scholar
  46. 46.
    Wang X, Veruki M, Bukoreshtliev N et al (2010) Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc Natl Acad Sci U S A 107:17194–17199CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Cselenyak A, Pankotai E, Horvath EM et al (2010) Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol 20:11–29Google Scholar
  48. 48.
    Plotnikov EY, Khryapenkov TG, Galkina SI et al (2010) Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in coculture. Exp. Cell Res 316:2447–2455CrossRefGoogle Scholar
  49. 49.
    Mi L, Xiong R, Zhang Y (2011) Microscopic observation of the intercellular transport of cdte quantum dot aggregates through tunneling-nanotubes. J Biomater Nanobiotechnol 2:173–180CrossRefGoogle Scholar
  50. 50.
    He K, Shi X, Zhang X et al (2011) Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc Res 92:39–47CrossRefPubMedGoogle Scholar
  51. 51.
    Acquistapace A, Bru T, Lesault PF et al (2011) Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondrial transfer. Stem Cells 29:812–824CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Yasuda K, Khandare A, Burianovsky L et al (2011) Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool. Aging 3:597–608CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lou E, Fujisawa S, Morozov A et al (2012) Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One 7:e33093CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang X, Bukoreshtliev NV, Gerdes HH (2012) Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes. PLoS One 7:e47429CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bénard M, Schapman D, Lebon A et al (2015) Structural and functional analysis of tunneling nanotubes using CW STED and gconfocal approaches. Biol Cell 107:419–425CrossRefPubMedGoogle Scholar
  56. 56.
    Naphade S, Sharma J, Gaide-Chevronnay HP et al (2015) Brief reports: lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes. Stem Cells 33:301–309CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Cell Biology and Neuroscience (UBA-CONICET), School of MedicineUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations