Advertisement

Tumor Immunology and Immunotherapy in Cancer Patients

  • Reinhard Marks
  • Roland MertelsmannEmail author
Chapter
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 16)

Abstract

Immunotherapy as a strategy for the treatment of cancer has experienced a major breakthrough in the recent years. Starting in the nineteenth century with the first observations by Rudolf Virchow suggesting a link between cancer and inflammation, thoroughly exploration of the immune systems cellular and humoral components together with their molecular mechanisms of activation and responses have paved the way for a deeper understanding of the immunological anti-tumor reactivity. In particular, insights into the mutual interaction between tumor growth and modulation of immune cell activation became of major impact for cancer treatment. Translation of this knowledge into the clinic resulted in a plethora of immunotherapy approaches. In this regard, tumor-specific vaccination, the use of cytokines or adoptive transfer of T cells aimed for direct augmentation of anti-tumor responses. Another approach uses the reversal of tumor induced T cell unresponsiveness by interference with T cell checkpoint inhibitors and their ligands. Especially the latter strategy resulted in until then unobserved tumor control rates in metastatic melanoma, lung cancer and other solid organ tumors. Additional advances could be achieved in redirection of T cells to tumor targets using genetic modification of T cell receptors or a new generation of antibody constructs, with impressive longterm results in hematological malignancies. Therefore, immunotherapy for cancer has been developed from an experimental approach to a new pillar of treatment for malignant diseases.

Keywords

Cancer and inflammation Immunological anti-tumor response T cell response Melanoma Lung cancer Solid tumors Antibody constructs Cancer immunothrapy 

References

  1. 1.
    Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342:1432–1433PubMedCrossRefGoogle Scholar
  2. 2.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545PubMedCrossRefGoogle Scholar
  3. 3.
    Coley WB (1891) II. Contribution to the knowledge of Sarcoma. Ann Surg 14:199–220PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bower M, Palmieri C, Dhillon T (2006) AIDS-related malignancies: changing epidemiology and the impact of highly active antiretroviral therapy. Curr Opin Infect Dis 19:14–19PubMedCrossRefGoogle Scholar
  5. 5.
    Giraldo NA, Becht E, Vano Y et al (2015) The immune response in cancer: from immunology to pathology to immunotherapy. Virchows Arch 467:127–135PubMedCrossRefGoogle Scholar
  6. 6.
    Miller JF, Sadelain M (2015) The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell 27:439–449PubMedCrossRefGoogle Scholar
  7. 7.
    Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281PubMedCrossRefGoogle Scholar
  8. 8.
    Hung K, Hayashi R, Lafond-Walker A et al (1998) The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188:2357–2368PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Fridman WH, Pages F, Sautes-Fridman C et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306PubMedCrossRefGoogle Scholar
  10. 10.
    Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964PubMedCrossRefGoogle Scholar
  11. 11.
    Muris JJ, Meijer CJ, Cillessen SA et al (2004) Prognostic significance of activated cytotoxic T-lymphocytes in primary nodal diffuse large B-cell lymphomas. Leukemia 18:589–596PubMedCrossRefGoogle Scholar
  12. 12.
    Scott DW, Chan FC, Hong F et al (2013) Gene expression-based model using formalin-fixed paraffin-embedded biopsies predicts overall survival in advanced-stage classical Hodgkin lymphoma. J Clin Oncol 31:692–700PubMedCrossRefGoogle Scholar
  13. 13.
    Kamper P, Bendix K, Hamilton-Dutoit S et al (2011) Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein-Barr virus status in classical Hodgkin’s lymphoma. Haematologica 96:269–276PubMedCrossRefGoogle Scholar
  14. 14.
    Dieu-Nosjean MC, Goc J, Giraldo NA et al (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35:571–580PubMedCrossRefGoogle Scholar
  15. 15.
    Dieu-Nosjean MC, Antoine M, Danel C et al (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26:4410–4417PubMedCrossRefGoogle Scholar
  16. 16.
    Goc J, Germain C, Vo-Bourgais TK et al (2014) Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res 74:705–715PubMedCrossRefGoogle Scholar
  17. 17.
    Giraldo NA, Becht E, Pages F et al (2015) Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res 21:3031–3040PubMedCrossRefGoogle Scholar
  18. 18.
    Cipponi A, Mercier M, Seremet T et al (2012) Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res 72:3997–4007PubMedCrossRefGoogle Scholar
  19. 19.
    Gu-Trantien C, Loi S, Garaud S et al (2013) CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 123:2873–2892PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Martinet L, Garrido I, Filleron T et al (2011) Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res 71:5678–5687PubMedCrossRefGoogle Scholar
  21. 21.
    Curiel TJ (2007) Tregs and rethinking cancer immunotherapy. J Clin Invest 117:1167–1174PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    de Leeuw RJ, Kost SE, Kakal JA et al (2012) The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res 18:3022–3029CrossRefGoogle Scholar
  23. 23.
    Zhang X, Kelaria S, Kerstetter J et al (2015) The functional and prognostic implications of regulatory T cells in colorectal carcinoma. J Gastrointest Oncol 6:307–313PubMedPubMedCentralGoogle Scholar
  24. 24.
    Matsushita H, Vesely MD, Koboldt DC et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–404PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lennerz V, Fatho M, Gentilini C et al (2005) The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA 102:16013–16018PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cunningham D, Atkin W, Lenz HJ et al (2010) Colorectal cancer. Lancet 375:1030–1047PubMedCrossRefGoogle Scholar
  27. 27.
    de Chaisemartin L, Goc J, Damotte D et al (2011) Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res 71:6391–6399PubMedCrossRefGoogle Scholar
  28. 28.
    Mlecnik B, Tosolini M, Charoentong P et al (2010) Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology 138:1429–1440PubMedCrossRefGoogle Scholar
  29. 29.
    Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81PubMedCrossRefGoogle Scholar
  30. 30.
    Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274PubMedCrossRefGoogle Scholar
  31. 31.
    Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Simpson TR, Li F, Montalvo-Ortiz W et al (2013) Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 210:1695–1710PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Rygaard J, Povlsen CO (1976) The nude mouse vs. the hypothesis of immunological surveillance. Transplant Rev 28:43–61PubMedGoogle Scholar
  34. 34.
    Shankaran V, Ikeda H, Bruce AT et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111PubMedCrossRefGoogle Scholar
  35. 35.
    Huang P, Westmoreland SV, Jain RK et al (2011) Spontaneous nonthymic tumors in SCID mice. Comp Med 61:227–234PubMedPubMedCentralGoogle Scholar
  36. 36.
    Penn I, Starzl TE (1973) Immunosuppression and cancer. Transplant Proc 5:943–947PubMedPubMedCentralGoogle Scholar
  37. 37.
    Roziakova L, Bojtarova E, Mistrik M et al (2011) Secondary malignancies after hematopoietic stem cell transplantation. Neoplasma 58:1–8PubMedCrossRefGoogle Scholar
  38. 38.
    Coulie PG, Van den Eynde BJ, van der Bruggen P et al (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14:135–146PubMedCrossRefGoogle Scholar
  39. 39.
    Gubin MM, Zhang X, Schuster H et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515:577–581PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Snyder A, Makarov V, Merghoub T et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Boon T, Van den Eynde BJ, Hirsch H et al (1994) Genes coding for tumor-specific rejection antigens. Cold Spring Harb Symp Quant Biol 59:617–622PubMedCrossRefGoogle Scholar
  42. 42.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570PubMedCrossRefGoogle Scholar
  43. 43.
    Hoos A (2016) Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 15:235–247PubMedCrossRefGoogle Scholar
  44. 44.
    Kruit WH, Suciu S, Dreno B et al (2013) Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European Organisation for Research and Treatment of Cancer Melanoma Group in Metastatic Melanoma. J Clin Oncol 31:2413–2420PubMedCrossRefGoogle Scholar
  45. 45.
    Wheatley K, Ives N, Hancock B et al (2003) Does adjuvant interferon-alpha for high-risk melanoma provide a worthwhile benefit? A meta-analysis of the randomised trials. Cancer Treat Rev 29:241–252PubMedCrossRefGoogle Scholar
  46. 46.
    Atkins MB, Lotze MT, Dutcher JP et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116PubMedGoogle Scholar
  47. 47.
    Rosenberg SA (2014) IL-2: the first effective immunotherapy for human cancer. J Immunol 192:5451–5458PubMedCrossRefGoogle Scholar
  48. 48.
    Hughes T, Klairmont M, Broucek J et al (2015) The prognostic significance of stable disease following high-dose interleukin-2 (IL-2) treatment in patients with metastatic melanoma and renal cell carcinoma. Cancer Immunol Immunother 64:459–465PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Simpson AJ, Caballero OL, Jungbluth A et al (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625PubMedCrossRefGoogle Scholar
  50. 50.
    Brichard VG, Lejeune D (2007) GSK’s antigen-specific cancer immunotherapy programme: pilot results leading to Phase III clinical development. Vaccine 25(S2):B61–B71PubMedCrossRefGoogle Scholar
  51. 51.
    Vansteenkiste JF, Cho BC, Vanakesa T et al (2016) Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 17:822–835PubMedCrossRefGoogle Scholar
  52. 52.
    Kruit WH, van Ojik HH, Brichard VG et al (2005) Phase 1/2 study of subcutaneous and intradermal immunization with a recombinant MAGE-3 protein in patients with detectable metastatic melanoma. Int J Cancer 117:596–604PubMedCrossRefGoogle Scholar
  53. 53.
    Sangha R, Butts C (2007) L-BLP25: a peptide vaccine strategy in non small cell lung cancer. Clin Cancer Res 13:4652–4654CrossRefGoogle Scholar
  54. 54.
    Butts C, Murray N, Maksymiuk A et al (2005) Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol 23:6674–6681PubMedCrossRefGoogle Scholar
  55. 55.
    North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155:1063–1074PubMedCrossRefGoogle Scholar
  56. 56.
    Butts C, Socinski MA, Mitchell PL et al (2014) Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol 15:59–68PubMedCrossRefGoogle Scholar
  57. 57.
    Walter S, Weinschenk T, Stenzl A et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18:1254–1261PubMedCrossRefGoogle Scholar
  58. 58.
    Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422PubMedCrossRefGoogle Scholar
  59. 59.
    Goldman B, De Francesco L (2009) The cancer vaccine roller coaster. Nat Biotechnol 27:129–139PubMedCrossRefGoogle Scholar
  60. 60.
    Harding FA, McArthur JG, Gross JA et al (1992) CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356:607–609PubMedCrossRefGoogle Scholar
  61. 61.
    Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Krummel MF, Allison JP (2011) Pillars article: CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Immunol 187:3459–3465PubMedGoogle Scholar
  64. 64.
    Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736PubMedCrossRefGoogle Scholar
  65. 65.
    Keir ME, Butte MJ, Freeman GJ et al (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704PubMedCrossRefGoogle Scholar
  66. 66.
    Perez-Gracia JL, Labiano S, Rodriguez-Ruiz ME et al (2014) Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Curr Opin Immunol 27:89–97PubMedCrossRefGoogle Scholar
  67. 67.
    Watanabe N, Nakajima H (2012) Coinhibitory molecules in autoimmune diseases. Clin Dev Immunol 2012:269756PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Festino L, Botti G, Lorigan P et al (2016) Cancer treatment with anti-PD-1/PD-L1 agents: is PD-L1 expression a biomarker for patient selection? Drugs 76:925–945PubMedCrossRefGoogle Scholar
  69. 69.
    Iwai Y, Ishida M, Tanaka Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526PubMedCrossRefGoogle Scholar
  72. 72.
    O’Day SJ, Maio M, Chiarion-Sileni V et al (2010) Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann Oncol 21:1712–1717PubMedCrossRefGoogle Scholar
  73. 73.
    Weber JS, O’Day S, Urba W et al (2008) Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol 26:5950–5956PubMedCrossRefGoogle Scholar
  74. 74.
    Hoos A, Eggermont AM, Janetzki S et al (2010) Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst 102:1388–1397PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wolchok JD, Hoos A, O’Day S et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420PubMedCrossRefGoogle Scholar
  76. 76.
    Della Vittoria-Scarpati G, Fusciello C, Perry F et al (2014) Ipilimumab in the treatment of metastatic melanoma: management of adverse events. Onco Targets Ther 7:203–209PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lynch TJ, Bondarenko I, Luft A et al (2012) Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol 30:2046–2054PubMedCrossRefGoogle Scholar
  78. 78.
    Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330PubMedCrossRefGoogle Scholar
  79. 79.
    Weber JS, D’Angelo SP, Minor D et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384PubMedCrossRefGoogle Scholar
  80. 80.
    Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532PubMedCrossRefGoogle Scholar
  81. 81.
    Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639PubMedCrossRefGoogle Scholar
  83. 83.
    Herbst RS, Baas P, Kim DW et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer: a randomised controlled trial. Lancet 387:1540–1550PubMedCrossRefGoogle Scholar
  84. 84.
    Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813PubMedCrossRefGoogle Scholar
  85. 85.
    Lee DW, Kochenderfer JN, Stetler-Stevenson M et al (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385:517–528PubMedCrossRefGoogle Scholar
  86. 86.
    Kwon ED, Drake CG, Scher HI et al (2014) Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy: a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15:700–712PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ansell SM, Lesokhin AM, Borrello I et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319PubMedCrossRefGoogle Scholar
  88. 88.
    Fehrenbacher L, Spira A, Ballinger M et al (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer: a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387:1837–1846PubMedCrossRefGoogle Scholar
  89. 89.
    Powles T, Eder JP, Fine GD et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562PubMedCrossRefGoogle Scholar
  90. 90.
    Taube JM, Klein A, Brahmer JR et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Shin DS, Ribas A (2015) The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next? Curr Opin Immunol 33:23–35PubMedCrossRefGoogle Scholar
  93. 93.
    Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318–1321PubMedCrossRefGoogle Scholar
  95. 95.
    Gattinoni L, Powell DJ Jr, Rosenberg SA et al (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383–393PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Besser MJ, Shapira-Frommer R, Treves AJ et al (2010) Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res 16:2646–2655PubMedCrossRefGoogle Scholar
  97. 97.
    Dudley ME, Yang JC, Sherry R et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–5239PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ellebaek E, Iversen TZ, Junker N et al (2012) Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med 10:169–175PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Bunnell BA, Muul LM, Donahue RE et al (1995) High-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes. Proc Natl Acad Sci USA 92:7739–7743PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Mavilio F, Ferrari G, Rossini S et al (1994) Peripheral blood lymphocytes as target cells of retroviral vector-mediated gene transfer. Blood 83:1988–1997PubMedGoogle Scholar
  101. 101.
    Stone JD, Kranz DM (2013) Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies. Front Immunol 4:244–252PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Robbins PF, Morgan RA, Feldman SA et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917–924PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Porter DL, Hwang WT, Frey NV et al (2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 7:303ra139Google Scholar
  104. 104.
    Brentjens RJ, Davila ML, Riviere I, et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5:177ra138Google Scholar
  105. 105.
    Davila ML, Riviere I, Wang X et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6:224ra225Google Scholar
  106. 106.
    Grupp SA, Kalos M, Barrett D et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507–1517PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Porter DL, Levine BL, Kalos M et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Topp MS, Gokbuget N, Zugmaier G et al (2014) Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol 32:4134–4140PubMedCrossRefGoogle Scholar
  110. 110.
    Topp MS, Kufer P, Gokbuget N et al (2011) Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 29:2493–2498PubMedCrossRefGoogle Scholar
  111. 111.
    Viardot A, Goebeler ME, Hess G et al (2016) Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood 127:1410–1416PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Hematology/OncologyUniversity Medical CenterFreiburgGermany

Personalised recommendations