Advertisement

Systemic Oxidative Stress in Patients with Neurodegenerative Diseases

  • Marisa G. RepettoEmail author
  • Alberto Boveris
Chapter
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 16)

Abstract

Oxidative stress and oxidative damage have been recognized in the brain of patients with neurodegenerative diseases since the early stages of the diseases. Oxidative stress and damage have been reported in patients of Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis and vascular dementia. Products of free-radical reactions in the brain, such as lipid peroxidation products and carbonyl groups in small peptides, were determined in blood, plasma, serum and cerebrospinal fluid of patients with the mentioned diseases. There is a clear evidence of a link between brain oxidative stress and damage and circulating indicators of such damage. Body fluids from living patients represent the best source of information about brain metabolism in neurodegenerative diseases. Cerebrospinal fluid provides a unique window of brain status for neuronal cell and brain tissue alterations. The ideal biomarker of brain oxidative stress should be determined in blood or plasma that are easy to collect.

Keywords

Oxidative stress Systemic oxidative stress Neurodegenerative diseases Alzheimer disease Parkinson disease Amyotrophic lateral sclerosis Vascular dementia Plasma biomarkers 

Notes

Acknowledgements

The authors acknowledge the selection of patients and the plasma samples provided by Dr. Raúl Dominguez and the SOD measurements and statistics made by Dr. Jorge A. Serra.

References

  1. 1.
    Hampel H, Prvulovic D, Teipel S et al (2011) The future of Alzheimer’s disease: the next 10 years. Prog Neurobiol 95:718–728CrossRefPubMedGoogle Scholar
  2. 2.
    Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376CrossRefPubMedGoogle Scholar
  3. 3.
    Cristalli D, Arnal N, Marra F et al (2012) Peripheral markers in neurodegenerative patients and their first-degree relatives. J Neurol Sci 314:48–56CrossRefPubMedGoogle Scholar
  4. 4.
    Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5:1–17CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang J (2013) Autophagy and mitophagy in cellular damage control. Redox Biol 1:19–23CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sies H (1985) Oxidative stress, introductory remarks. Academic, LondonCrossRefGoogle Scholar
  7. 7.
    Halliwell B, Gutteridge J (1989) Lipid peroxidation-. A radical chain reaction. In: Free Radic Biol Med, 2nd edn. Clarendon, Oxford, pp 188–276Google Scholar
  8. 8.
    Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31–38CrossRefGoogle Scholar
  9. 9.
    Boveris A, Cadenas E (1997) Cellular sources and steady-state levels of reactive oxygen species. In: Biadasz-Clerch L, Massaro DJ (eds) Oxygen, Gene Expression, and Cellular Function. Marcel Dekker, NY, pp 1–25Google Scholar
  10. 10.
    Jones D (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:849–868CrossRefGoogle Scholar
  11. 11.
    Sies H, Jones DP (2007) Encyclopedia of Stress, Fink G (ed). 2nd edn, vol. 3. Elsevier, Amsterdam, pp 45–48Google Scholar
  12. 12.
    Seim S (1982) Production of reactive oxygen species and chemiluminescence by human monocytes during differentiation and lymphokine activation in vitro. Acta Pathol Microbiol Immunol Scand C 90:179–185PubMedGoogle Scholar
  13. 13.
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:529–625Google Scholar
  14. 14.
    Boveris A, Cadenas E, Reiter R et al (1980) Organ chemiluminescence: noninvasive assay for oxidative radical reactions. Proc Natl Acad Sci 77:347–351CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sloane P, Zimmerman S, Suchindran C et al (2002) The public health impact of Alzheimer’s disease 2000–2050: potential implication of treatment advances. Annu Rev Public Health 23:213–231CrossRefPubMedGoogle Scholar
  16. 16.
    Opazzo C, Barría MI, Ruiz FH, Inestrosa NC (2003) Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. Biometals 16:91–98CrossRefGoogle Scholar
  17. 17.
    Wimo A, Winblad B, Aguero-Torres H, von Strauss E (2003) The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc Discord 17:63–67CrossRefGoogle Scholar
  18. 18.
    Gordon PH (2011) The range and clinical impact of cognitive impairment in French patients with ALS: a cross-sectional study of neuropsychological test performance. Amyotroph Lateral Scler 25:1–15Google Scholar
  19. 19.
    Gatto EM, Carreras MC, Pargament G et al (1996) Neutrophil function, nitric oxide and blood oxidative stress in Parkinson’s disease. Mov Disord 11:261–267CrossRefPubMedGoogle Scholar
  20. 20.
    Famulari A, Marschoff E, Llesuy S et al (1996) The antioxidant enzymatic blood profile in Alzheimer’s and vascular diseases. Their association and a possible assay to differentiate demented subjects and controls. J Neurol Sci 141:69–78CrossRefPubMedGoogle Scholar
  21. 21.
    Repetto M, Reides C, Evelson P et al (1999) Peripheral markers of oxidative stress in probable Alzheimer patients. Eur J Clin Investing 29:643–649CrossRefGoogle Scholar
  22. 22.
    Fiszman M, Ricart K et al (2003) Evidences of oxidative stress in familial amyloidotic polyneuropathy Type 1. Arch Neurol 60:593–597CrossRefPubMedGoogle Scholar
  23. 23.
    Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84CrossRefPubMedGoogle Scholar
  24. 24.
    Kozlowski H, Janck-Klos A, Brasun J et al (2009) Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders. Coord Chem Rev 253:2665–2685CrossRefGoogle Scholar
  25. 25.
    Hardas S, Sultana R, Clark A et al (2013) Oxidative modification of lipoic acid by HNE in Alzheimer diseased brain. Redox Biol 1:80–85CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Navarro A, Boveris A, Bández MJ et al (2009) Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies. Free Radic Biol Med 46:1574–1580CrossRefPubMedGoogle Scholar
  27. 27.
    Navarro A, Boveris A (2009) Brain mitochondrial dysfunction and oxidative damage in Parkinson's disease. J Bioenerg Biomembr 41:517–521CrossRefPubMedGoogle Scholar
  28. 28.
    Navarro A, Boveris A (2010) Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson's disease. Front Aging Neurosci 2:1–34Google Scholar
  29. 29.
    Repetto MG, Ferrarotti N, Boveris A (2010) The involvement of transition metal ions on iron-dependent lipid peroxidation. Arch Toxicol 84:255–262CrossRefPubMedGoogle Scholar
  30. 30.
    Musacco-Sebio R, Ferrarotti N, Saporito-Magriña C et al (2014) Rat brain oxidative damage in iron and copper overloads. Metallomics 6:1410–1416CrossRefPubMedGoogle Scholar
  31. 31.
    Semprine J, Ferrarotti N, Musacco-Sebio R et al (2014) Brain antioxidant response to iron and copper acute intoxications in rats. Metallomics 6:2083–2089CrossRefPubMedGoogle Scholar
  32. 32.
    Siciliano R, Barone E, Calabrese V et al (2011) Experimental research on nitric oxide and the therapy of Alzheimer disease: a challenging bridge. CNS Neurol Public Health 23:213–231Google Scholar
  33. 33.
    Calabrese V, Cornelius C, Leso V et al (2012) Oxidative stress, glutathione status, sirtuin and celular stress response in type 2 diabetes. Biochim Biophys Acta 1822:729–736CrossRefPubMedGoogle Scholar
  34. 34.
    Cornelius C, Trovato-Salinaro A, Scuto M et al (2013) cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. Immun Ageing 10:41–51CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Trovato Salinaro A, Cornelius C, Koverech G et al (2014) Cellular stress response, redox status, and vitagenes in glaucoma, a systemic oxidant disorder linked to Alzheimer’s disease. Front Pharmacol 5:1–8CrossRefGoogle Scholar
  36. 36.
    Nunomura A, Perry G, Aliev G et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767CrossRefPubMedGoogle Scholar
  37. 37.
    Gerhardsson I, Lundh T, Minthon L, London E (2008) Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer disease. Dement Geriatr Cogn Disord 25:508–515CrossRefPubMedGoogle Scholar
  38. 38.
    Vural H, Demirin H, Kara Y et al (2010) Alterations in plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer’s disease. J Trace Elem Med Biol 24:169–173CrossRefPubMedGoogle Scholar
  39. 39.
    Serra JA, Marschoff E, Dominguez R et al (2004) Oxidative stress in Alzheimer’s and vascular dementias: masking of the antioxidant profiles by concomitant type II diabetes mellitus condition. J Neurol Sci 218:17–24CrossRefPubMedGoogle Scholar
  40. 40.
    Henriksen K, O'Bryant SE, Hampel H et al (2014) The future of blood-based biomarkers for Alzheimer's disease. Alzheimers Dement 10:115–131CrossRefPubMedGoogle Scholar
  41. 41.
    Caldeira GI, Ferreira IL, Rego AC (2013) Impaired transcription in Alzheimer’s disease: key role in mitochondrial dysfunction and oxidative stress. J Alzheimers Dis 34:115–131PubMedGoogle Scholar
  42. 42.
    Ramsey CP, Glass CA, Montgomery MB et al (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropath Exp Neurol 66:75–85CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cummings JL, Doody R, Clark C (2007) Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurol 69:1622–1634CrossRefGoogle Scholar
  44. 44.
    Song F, Poljak A, Smythe G, Sachdev P (2009) plasma biomarkers for mild cognitive impairment and Alzheimer’s disease. Brain Res Rev 51:69–80CrossRefGoogle Scholar
  45. 45.
    Zarkovic K (2003) 4-Hydroxynonenal and neurodegenerative diseases. Mol Aspect Med 24:293–303CrossRefGoogle Scholar
  46. 46.
    Casado A, López-Fernández ME, Casado MC, La-Torre R (2008) Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res 33:450–458CrossRefPubMedGoogle Scholar
  47. 47.
    Buendia I, Michalska P, Navarro E et al (2015) Nrf2-ARE pathway: an emerging target against oxidative stress and neuroinfalmmation in neurodegenerative diseases. Pharmacol Ther 157:84–104CrossRefPubMedGoogle Scholar
  48. 48.
    Hye A, Lymham S, Thambisetty M et al (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129:3042–3050CrossRefPubMedGoogle Scholar
  49. 49.
    Selley M (1998) 4-Hydroxy-2-nonenal may be involved in the pathogenesis of Parkinson disease. Free Radic Biol Med 25:169–174CrossRefPubMedGoogle Scholar
  50. 50.
    Randall J, Mortberg E, Provuncher G et al (2013) Tau proteins in serum predict neurological out-come after hypoxic brain injury from cardiac arrest: results of a pilot study. Resucitation 84:351–356CrossRefGoogle Scholar
  51. 51.
    De Luigi A, Fragiacomo C, Lucca U et al (2001) Inflammatory markers in Alzheimer’s disease and multi-infarct dementia. Mechanisms Aging Develop 122:1985–1995CrossRefGoogle Scholar
  52. 52.
    Solomon A, Karenhot I, Ngandu T et al (2007) Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow up study. Neurol 68:751–756CrossRefGoogle Scholar
  53. 53.
    Schrag M, Mueller C, Oyoyo U et al (2011) Iron, zinc and copper in the Alzheimer's disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol 94:296–306CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chang Y, Chang W, Tsai N et al (2014) The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: a systematic review. Bio Med Res Intl 2014:182303Google Scholar
  55. 55.
    Bradley M, Markesbery W, Lovell M (2010) Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer’s disease. Free Radic Biol Med 48:1570–1576CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Guzmán-Martínez L, Farías G, Maccioni R (2012) Emerging noninvasive biomarkers for early detection of Alzheimer’s disease. Arch Med Res 43:663–666CrossRefPubMedGoogle Scholar
  57. 57.
    Shadri S (2006) Elevated plasma homocysteine levels: risk factor or risk marker for the development of dementia and Alzheimer’s disease? J Alzheimer Dis 9:393–398Google Scholar
  58. 58.
    Di Domenico F, Coccia R, Buttterfield A, Perluigi M (2011) Circulating biomarkers of protein oxidation for Alzheimer disease: expectations within limits. Biochem Biophys Acta 1814:1785–1795PubMedGoogle Scholar
  59. 59.
    Ravaglia G, Forti P, Maioli F et al (2007) Blood inflammatory markers and risk of dementia: the Conselice study of brain aging. Neurobiol Aging 28:1810–1820CrossRefPubMedGoogle Scholar
  60. 60.
    Leutner S, Schindownski K, Frolich L et al (2005) Enhanced ROS-generation in lymphocytes of Alzheimer’s disease. Pharmacopsychiatry 38:312–315CrossRefPubMedGoogle Scholar
  61. 61.
    Repetto M (2008) Clinical use of chemiluminescence assays for the determination of systemic oxidative stress. In: Popov I, Lewin G (eds) Handbook of chemiluminescent methods in oxidative stress assessment. Transword Research Network, Kerala, pp 163–194Google Scholar
  62. 62.
    Lustig E, Serra JA, Kohan S et al (1993) Copper-zinc superoxide dismutase activity in red blood cells and serum in demented patients and in aging. J Neurol Sci 115:18–25CrossRefPubMedGoogle Scholar
  63. 63.
    McGrath LT, McGreenon BM, Brennan S et al (2001) Increased oxidative stress in Alzheimer’s disease as assessed with 4-hydroxynonenal but not malonaldehyde. QJ Med 94:485–490CrossRefGoogle Scholar
  64. 64.
    Conrad CC, Marshall JM, Talent TL et al (2000) Oxidized protein in Alzheimer’s plasma. Biochem Biophys Res Commun 275:678–681CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Pharmacy and Biochemistry, Department of General Chemistry, General and Inorganic Chemistry Division, Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET)University of Buenos AiresBuenos AiresArgentina

Personalised recommendations