Neurovascular Coupling Mediated by Neuronal Derived-Nitric Oxide: Mechanisms in Health and Dysfunction with Impact on Aging and Alzheimer’s Disease

  • Cátia F. Lourenço
  • Ana Ledo
  • Rui M. Barbosa
  • João LaranjinhaEmail author
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 16)


Neurovascular coupling is an intricate mechanism whereby local blood flow is strictly adjusted in time and space to neuronal activity. Intimately associated to glutamatergic neurotransmission, it is a complex mechanism that relies on the concerted communication of neurons and vascular cells, with assumed enrolment of other cell types. Nitric oxide (NO) is uniquely suited to integrate the activity of all components of the neurovascular unit. Due to its hydrophobicity and reduced size, NO can diffuse in the brain tissue and integrate the activity of multiple cells irrespective of their physical connection to the producing cell.

In this chapter we review evidence supporting the involvement of NO derived directly from neuronal activity as a result of glutamatergic neurotransmission in neurovascular coupling. Furthermore, we discuss dysfunction of NO-mediated neurovascular coupling as a fundamental process in the aging brain and in Alzheimer’s disease, emphasizing the putative role of oxidative stress.


Nitric oxide Neurovascular coupling Alzheimer's Disease Aging Oxidative stress 


  1. 1.
    Magistretti PJ (2006) Neuron-glia metabolic coupling and plasticity. J Exp Biol 209:2304–2311PubMedCrossRefGoogle Scholar
  2. 2.
    Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497PubMedCrossRefGoogle Scholar
  3. 3.
    Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360PubMedCrossRefGoogle Scholar
  4. 4.
    Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol 11(85–158):117Google Scholar
  5. 5.
    Attwell D, Buchan AM, Charpak S, Lauritzen M et al (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Iadecola C (1993) Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci 16:206–214PubMedCrossRefGoogle Scholar
  7. 7.
    Gally JA, Montague PR, Reeke GN Jr, Edelman GM (1990) The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci U S A 87:3547–3551PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Powers WJ, Hirsch IB, Cryer PE (1996) Effect of stepped hypoglycemia on regional cerebral blood flow response to physiological brain activation. Am J Physiol 270:H554–H559PubMedGoogle Scholar
  9. 9.
    Lindauer U, Leithner C, Kaasch H, Rohrer B et al (2010) Neurovascular coupling in rat brain operates independent of hemoglobin deoxygenation. J Cereb Blood Flow Metab 30:757–768PubMedCrossRefGoogle Scholar
  10. 10.
    Duchemin S, Boily M, Sadekova N, Girouard H (2012) The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front Neural Circuits 6:51PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bonvento G, Sibson N, Pellerin L (2002) Does glutamate image your thoughts? Trends Neurosci 25:359–364PubMedCrossRefGoogle Scholar
  12. 12.
    Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 179:4–29CrossRefGoogle Scholar
  13. 13.
    Busija DW, Leffler CW (1989) Dilator effects of amino acid neurotransmitters on piglet pial arterioles. Am J Physiol 257:H1200–H1203PubMedGoogle Scholar
  14. 14.
    Busija DW, Bari F, Domoki F, Louis T (2007) Mechanisms involved in the cerebrovascular dilator effects of N-methyl-d-aspartate in cerebral cortex. Brain Res Rev 56:89–100PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Yang G, Iadecola C (1996) Glutamate microinjections in cerebellar cortex reproduce cerebrovascular effects of parallel fiber stimulation. Am J Physiol 271:R1568–R1575PubMedGoogle Scholar
  16. 16.
    Rancillac A, Rossier J, Guille M, Tong XK et al (2006) Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum. J Neurosci 26:6997–7006PubMedCrossRefGoogle Scholar
  17. 17.
    Lovick TA, Brown LA, Key BJ (1999) Neurovascular relationships in hippocampal slices: physiological and anatomical studies of mechanisms underlying flow-metabolism coupling in intraparenchymal microvessels. Neuroscience 92:47–60PubMedCrossRefGoogle Scholar
  18. 18.
    Lourenço CF, Santos RM, Barbosa RM, Cadenas E et al (2014) Neurovascular coupling in hippocampus is mediated via diffusion by neuronal-derived nitric oxide. Free Radic Biol Med 73:421–429PubMedCrossRefGoogle Scholar
  19. 19.
    Bhardwaj A, Northington FJ, Carhuapoma JR, Falck JR et al (2000) P-450 epoxygenase and NO synthase inhibitors reduce cerebral blood flow response to N-methyl-D-aspartate. Am J Physiol Heart Circ Physiol 279:H1616–H1624PubMedGoogle Scholar
  20. 20.
    LeMaistre JL, Sanders SA, Stobart MJ, Lu L et al (2012) Coactivation of NMDA receptors by glutamate and D-serine induces dilation of isolated middle cerebral arteries. J Cereb Blood Flow Metab 32:537–547PubMedCrossRefGoogle Scholar
  21. 21.
    Chen BR, Kozberg MG, Bouchard MB, Shaik MA et al (2014) A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc 3:e000787PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Girouard H (1985) Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100:328–335CrossRefGoogle Scholar
  23. 23.
    Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57:683–706PubMedCrossRefGoogle Scholar
  24. 24.
    Bredt DS, Glatt CE, Hwang PM, Fotuhi M et al (1991) Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7:615–624PubMedCrossRefGoogle Scholar
  25. 25.
    Tochio H, Zhang Q, Mandal P, Li M et al (1999) Solution structure of the extended neuronal nitric oxide synthase PDZ domain complexed with an associated peptide. Nat Struct Biol 6:417–421PubMedCrossRefGoogle Scholar
  26. 26.
    Brenman JE, Chao DS, Gee SH, McGee AW et al (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84:757–767PubMedCrossRefGoogle Scholar
  27. 27.
    Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737–1740PubMedCrossRefGoogle Scholar
  28. 28.
    Niethammer M, Kim E, Sheng M (1996) Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci 16:2157–2163PubMedGoogle Scholar
  29. 29.
    Christopherson KS, Hillier BJ, Lim WA, Bredt DS (1999) PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274:27467–27473PubMedCrossRefGoogle Scholar
  30. 30.
    Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA et al (1998) CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron 20:115–124PubMedCrossRefGoogle Scholar
  31. 31.
    Nedvetsky PI, Sessa WC, Schmidt HH (2002) There’s NO binding like NOS binding: protein-protein interactions in NO/cGMP signaling. Proc Natl Acad Sci U S A 99:16510–16512PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Dawson VL, Dawson TM (1998) Nitric oxide in neurodegeneration. Prog Brain Res 118:215–229PubMedCrossRefGoogle Scholar
  33. 33.
    Daff S (2010) NO synthase: structures and mechanisms. Nitric Oxide 23:1–11PubMedCrossRefGoogle Scholar
  34. 34.
    Pereira C, Ferreira NR, Rocha BS, Barbosa RM et al (2013) The redox interplay between nitrite and nitric oxide: From the gut to the brain. Redox Biol 1:276–284PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Piknova B, Kocharyan A, Schechter AN, Silva AC (2011) The role of nitrite in neurovascular coupling. Brain Res 1407:62–68PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Moncada S, Higgs EA (2006) The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 147(Suppl 1):S193–S201PubMedPubMedCentralGoogle Scholar
  37. 37.
    Murad F (1986) Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78:1–5PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cohen RA, Adachi T (2006) Nitric-oxide-induced vasodilatation: regulation by physiologic s-glutathiolation and pathologic oxidation of the sarcoplasmic endoplasmic reticulum calcium ATPase. Trends Cardiovasc Med 16:109–114PubMedCrossRefGoogle Scholar
  39. 39.
    Adachi T, Weisbrod RM, Pimentel DR, Ying J et al (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10:1200–1207PubMedCrossRefGoogle Scholar
  40. 40.
    Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199PubMedCrossRefGoogle Scholar
  41. 41.
    Lancaster JR Jr (1997) A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1:18–30PubMedCrossRefGoogle Scholar
  42. 42.
    Santos RM, Lourenco CF, Gerhardt GA, Cadenas E et al (2011) Evidence for a pathway that facilitates nitric oxide diffusion in the brain. Neurochem Int 59:90–96PubMedCrossRefGoogle Scholar
  43. 43.
    Ledo A, Barbosa RM, Gerhardt GA, Cadenas E et al (2005) Concentration dynamics of nitric oxide in rat hippocampal subregions evoked by stimulation of the NMDA glutamate receptor. Proc Natl Acad Sci U S A 102:17483–17488PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Santos RM, Lourenco CF, Pomerleau F, Huettl P et al (2011) Brain nitric oxide inactivation is governed by the vasculature. Antioxid Redox Signal 14:1011–1021PubMedCrossRefGoogle Scholar
  45. 45.
    Laranjinha J, Santos RM, Lourenço CF, Ledo A et al (2012) Nitric oxide signaling in the brain: translation of dynamics into respiration control and neurovascular coupling. Ann N Y Acad Sci 1259:10–18PubMedCrossRefGoogle Scholar
  46. 46.
    Cauli B, Tong XK, Rancillac A, Serluca N et al (2004) Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci 24:8940–8949PubMedCrossRefGoogle Scholar
  47. 47.
    Garthwaite J (2016) From synaptically localized to volume transmission by nitric oxide. J Physiol 594:9–18PubMedCrossRefGoogle Scholar
  48. 48.
    Dirnagl U, Lindauer U, Villringer A (1993) Role of nitric oxide in the coupling of cerebral blood flow to neuronal activation in rats. Neurosci Lett 149:43–46PubMedCrossRefGoogle Scholar
  49. 49.
    Northington FJ, Matherne GP, Berne RM (1992) Competitive inhibition of nitric oxide synthase prevents the cortical hyperemia associated with peripheral nerve stimulation. Proc Natl Acad Sci U S A 89:6649–6652PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Akgoren N, Fabricius M, Lauritzen M (1994) Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation. Proc Natl Acad Sci U S A 91:5903–5907PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Iadecola C, Li J, Ebner TJ, Xu X (1995) Nitric oxide contributes to functional hyperemia in cerebellar cortex. Am J Physiol 268:R1153–R1162PubMedGoogle Scholar
  52. 52.
    Meng W, Tobin JR, Busija DW (1995) Glutamate-induced cerebral vasodilation is mediated by nitric oxide through N-methyl-D-aspartate receptors. Stroke 26:857–862; discussion 863PubMedCrossRefGoogle Scholar
  53. 53.
    Faraci FM, Breese KR (1993) Nitric oxide mediates vasodilatation in response to activation of N-methyl-D-aspartate receptors in brain. Circ Res 72:476–480PubMedCrossRefGoogle Scholar
  54. 54.
    Pelligrino DA, Gay RL 3rd, Baughman VL, Wang Q (1996) NO synthase inhibition modulates NMDA-induced changes in cerebral blood flow and EEG activity. Am J Physiol 271:H990–H995PubMedGoogle Scholar
  55. 55.
    Bonvento G, Cholet N, Seylaz J (2000) Sustained attenuation of the cerebrovascular response to a 10 min whisker stimulation following neuronal nitric oxide synthase inhibition. Neurosci Res 37:163–166PubMedCrossRefGoogle Scholar
  56. 56.
    Yang ST, Chang HH (1998) Nitric oxide of neuronal origin mediates NMDA-induced cerebral hyperemia in rats. Neuroreport 9:415–418PubMedCrossRefGoogle Scholar
  57. 57.
    Faraci FM, Brian JE Jr (1995) 7-Nitroindazole inhibits brain nitric oxide synthase and cerebral vasodilatation in response to N-methyl-D-aspartate. Stroke 26:2172–2175; discussion 2176PubMedCrossRefGoogle Scholar
  58. 58.
    Adachi K, Takahashi S, Melzer P, Campos KL et al (1994) Increases in local cerebral blood flow associated with somatosensory activation are not mediated by NO. Am J Physiol 267:H2155–H2162PubMedGoogle Scholar
  59. 59.
    Greenberg JH, Sohn NW, Hand PJ (1999) Nitric oxide and the cerebral-blood-flow response to somatosensory activation following deafferentation. Exp Brain Res 129:541–550PubMedCrossRefGoogle Scholar
  60. 60.
    Wang Q, Kjaer T, Jorgensen MB, Paulson OB et al (1993) Nitric oxide does not act as a mediator coupling cerebral blood flow to neural activity following somatosensory stimuli in rats. Neurol Res 15:33–36PubMedCrossRefGoogle Scholar
  61. 61.
    Lacombe P, Seylaz J (1984) Significance of the cerebrovascular effects of immobilization stress in the rabbit. J Cereb Blood Flow Metab 4:397–406PubMedCrossRefGoogle Scholar
  62. 62.
    Artinian L, Zhong L, Yang H, Rehder V (2012) Nitric oxide as intracellular modulator: internal production of NO increases neuronal excitability via modulation of several ionic conductances. Eur J Neurosci 36:3333–3343PubMedCrossRefGoogle Scholar
  63. 63.
    Hoffmeyer HW, Enager P, Thomsen KJ, Lauritzen MJ (2007) Nonlinear neurovascular coupling in rat sensory cortex by activation of transcallosal fibers. J Cereb Blood Flow Metab 27:575–587PubMedCrossRefGoogle Scholar
  64. 64.
    Brozickova C, Otahal J (2013) Effect of an inhibitor of neuronal nitric oxide synthase 7-nitroindazole on cerebral hemodynamic response and brain excitability in urethane-anesthetized rats. Physiol Res 62(Suppl 1):S57–S66PubMedGoogle Scholar
  65. 65.
    Burke M, Buhrle C (2006) BOLD response during uncoupling of neuronal activity and CBF. Neuroimage 32:1–8PubMedCrossRefGoogle Scholar
  66. 66.
    Kalisch BE, Connop BP, Jhamandas K, Beninger RJ et al (1996) Differential action of 7-nitro indazole on rat brain nitric oxide synthase. Neurosci Lett 219:75–78PubMedCrossRefGoogle Scholar
  67. 67.
    Yang G, Zhang Y, Ross ME, Iadecola C (2003) Attenuation of activity-induced increases in cerebellar blood flow in mice lacking neuronal nitric oxide synthase. Am J Physiol Heart Circ Physiol 285:H298–H304PubMedCrossRefGoogle Scholar
  68. 68.
    Ma J, Ayata C, Huang PL, Fishman MC et al (1996) Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am J Physiol 270:H1085–H1090PubMedGoogle Scholar
  69. 69.
    Huang PL, Dawson TM, Bredt DS, Snyder SH et al (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75:1273–1286PubMedCrossRefGoogle Scholar
  70. 70.
    Eliasson MJ, Blackshaw S, Schell MJ, Snyder SH (1997) Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. Proc Natl Acad Sci U S A 94:3396–3401PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Putzke J, Seidel B, Huang PL, Wolf G (2000) Differential expression of alternatively spliced isoforms of neuronal nitric oxide synthase (nNOS) and N-methyl-D-aspartate receptors (NMDAR) in knockout mice deficient in nNOS alpha (nNOS alpha(Delta/Delta) mice). Brain Res Mol Brain Res 85:13–23PubMedCrossRefGoogle Scholar
  72. 72.
    Huang PL, Lo EH (1998) Genetic analysis of NOS isoforms using nNOS and eNOS knockout animals. Prog Brain Res 118:13–25PubMedCrossRefGoogle Scholar
  73. 73.
    Burnett AL, Nelson RJ, Calvin DC, Liu JX et al (1996) Nitric oxide-dependent penile erection in mice lacking neuronal nitric oxide synthase. Mol Med 2:288–296PubMedPubMedCentralGoogle Scholar
  74. 74.
    Meng W, Ma J, Ayata C, Hara H et al (1996) ACh dilates pial arterioles in endothelial and neuronal NOS knockout mice by NO-dependent mechanisms. Am J Physiol 271:H1145–H1150PubMedGoogle Scholar
  75. 75.
    Buerk DG, Ances BM, Greenberg JH, Detre JA (2003) Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats. Neuroimage 18:1–9PubMedCrossRefGoogle Scholar
  76. 76.
    Zonta M, Angulo MC, Gobbo S, Rosengarten B et al (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50PubMedCrossRefGoogle Scholar
  77. 77.
    Giaume C, Liu X (2012) From a glial syncytium to a more restricted and specific glial networking. J Physiol Paris 106:34–39PubMedCrossRefGoogle Scholar
  78. 78.
    Harder DR, Alkayed NJ, Lange AR, Gebremedhin D et al (1998) Functional hyperemia in the brain: hypothesis for astrocyte-derived vasodilator metabolites. Stroke 29:229–234PubMedCrossRefGoogle Scholar
  79. 79.
    Iliff JJ, Wang R, Zeldin DC, Alkayed NJ (2009) Epoxyeicosanoids as mediators of neurogenic vasodilation in cerebral vessels. Am J Physiol Heart Circ Physiol 296:H1352–H1363PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26:2862–2870PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Roman RJ (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82:131–185PubMedCrossRefGoogle Scholar
  82. 82.
    Sun CW, Falck JR, Okamoto H, Harder DR et al (2000) Role of cGMP versus 20-HETE in the vasodilator response to nitric oxide in rat cerebral arteries. Am J Physiol Heart Circ Physiol 279:H339–H350PubMedGoogle Scholar
  83. 83.
    Fujimoto Y, Uno E, Sakuma S (2004) Effects of reactive oxygen and nitrogen species on cyclooxygenase-1 and -2 activities. Prostaglandins Leukot Essent Fatty Acids 71:335–340PubMedCrossRefGoogle Scholar
  84. 84.
    Willmott NJ, Wong K, Strong AJ (2000) A fundamental role for the nitric oxide-G-kinase signaling pathway in mediating intercellular Ca(2+) waves in glia. J Neurosci 20:1767–1779PubMedGoogle Scholar
  85. 85.
    Nizar K, Uhlirova H, Tian P, Saisan PA et al (2013) In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J Neurosci 33:8411–8422PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bonder DE, McCarthy KD (2014) Astrocytic Gq-GPCR-linked IP3R-dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo. J Neurosci 34:13139–13150PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Sun W, McConnell E, Pare JF, Xu Q et al (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339:197–200PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gensert JM, Ratan RR (2006) The metabolic coupling of arginine metabolism to nitric oxide generation by astrocytes. Antioxid Redox Signal 8:919–928PubMedCrossRefGoogle Scholar
  89. 89.
    Lourenço CF, Ferreira NR, Santos RM, Lukacova N et al (2014) The pattern of glutamate-induced nitric oxide dynamics in vivo and its correlation with nNOS expression in rat hippocampus, cerebral cortex and striatum. Brain Res 1554:1–11PubMedCrossRefGoogle Scholar
  90. 90.
    Lindauer U, Megow D, Matsuda H, Dirnagl U (1999) Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex. Am J Physiol 277:H799–H811PubMedGoogle Scholar
  91. 91.
    Yang G, Iadecola C (1997) Obligatory role of NO in glutamate-dependent hyperemia evoked from cerebellar parallel fibers. Am J Physiol 272:R1155–R1161PubMedGoogle Scholar
  92. 92.
    Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770PubMedCrossRefGoogle Scholar
  93. 93.
    Valtschanoff JG, Weinberg RJ, Kharazia VN, Schmidt HH et al (1993) Neurons in rat cerebral cortex that synthesize nitric oxide: NADPH diaphorase histochemistry, NOS immunocytochemistry, and colocalization with GABA. Neurosci Lett 157:157–161PubMedCrossRefGoogle Scholar
  94. 94.
    Valtschanoff JG, Weinberg RJ, Kharazia VN, Nakane M et al (1993) Neurons in rat hippocampus that synthesize nitric oxide. J Comp Neurol 331:111–121PubMedCrossRefGoogle Scholar
  95. 95.
    Tricoire L, Vitalis T (2012) Neuronal nitric oxide synthase expressing neurons: a journey from birth to neuronal circuits. Front Neural Circuits 6:82PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bregestovski P, Zilberter Y (2014) Optogenetics to help exploring the cerebral blood flow regulation. Front Pharmacol 5:107PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738PubMedPubMedCentralGoogle Scholar
  98. 98.
    de la Torre JC (2004) Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 3:184–190PubMedCrossRefGoogle Scholar
  99. 99.
    Fisher JP, Hartwich D, Seifert T, Olesen ND et al (2013) Cerebral perfusion, oxygenation and metabolism during exercise in young and elderly individuals. J Physiol 591:1859–1870PubMedCrossRefGoogle Scholar
  100. 100.
    Schultz SK, O’Leary DS, Boles Ponto LL, Watkins GL et al (1999) Age-related changes in regional cerebral blood flow among young to mid-life adults. Neuroreport 10:2493–2496PubMedCrossRefGoogle Scholar
  101. 101.
    Krejza J, Mariak Z, Walecki J, Szydlik P et al (1999) Transcranial color Doppler sonography of basal cerebral arteries in 182 healthy subjects: age and sex variability and normal reference values for blood flow parameters. AJR Am J Roentgenol 172:213–218PubMedCrossRefGoogle Scholar
  102. 102.
    Fabiani M, Gordon BA, Maclin EL, Pearson MA et al (2014) Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study. Neuroimage 85(Pt 1):592–607PubMedCrossRefGoogle Scholar
  103. 103.
    Niwa K, Carlson GA, Iadecola C (2000) Exogenous A beta1-40 reproduces cerebrovascular alterations resulting from amyloid precursor protein overexpression in mice. J Cereb Blood Flow Metab 20:1659–1668PubMedCrossRefGoogle Scholar
  104. 104.
    Shin HK, Jones PB, Garcia-Alloza M, Borrelli L et al (2007) Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy. Brain 130:2310–2319PubMedCrossRefGoogle Scholar
  105. 105.
    Mueggler T, Baumann D, Rausch M, Staufenbiel M et al (2003) Age-dependent impairment of somatosensory response in the amyloid precursor protein 23 transgenic mouse model of Alzheimer’s disease. J Neurosci 23:8231–8236PubMedGoogle Scholar
  106. 106.
    Ruitenberg A, den Heijer T, Bakker SL, van Swieten JC et al (2005) Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol 57:789–794PubMedCrossRefGoogle Scholar
  107. 107.
    Alsop DC, Detre JA, Grossman M (2000) Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann Neurol 47:93–100PubMedCrossRefGoogle Scholar
  108. 108.
    Xu G, Antuono PG, Jones J, Xu Y et al (2007) Perfusion fMRI detects deficits in regional CBF during memory-encoding tasks in MCI subjects. Neurology 69:1650–1656PubMedCrossRefGoogle Scholar
  109. 109.
    Jessen SB, Mathiesen C, Lind BL, Lauritzen M (2015) Interneuron deficit associates attenuated network synchronization to mismatch of energy supply and demand in aging mouse brains. Cereb Cortex (in press)Google Scholar
  110. 110.
    Balbi M, Ghosh M, Longden TA, Jativa Vega M et al (2015) Dysfunction of mouse cerebral arteries during early aging. J Cereb Blood Flow Metab 35:1445–1453PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lourenço CF, Ledo A, Dias C, Barbosa RM et al (2015) Neurovascular and neurometabolic derailment in aging and Alzheimer’s disease. Front Aging Neurosci 7:103PubMedPubMedCentralGoogle Scholar
  112. 112.
    Ledo A, Lourenço CF, Caetano M, Barbosa RM et al (2015) Age-associated changes of nitric oxide concentration dynamics in the central nervous system of Fisher 344 rats. Cell Mol Neurobiol 35:33–44PubMedCrossRefGoogle Scholar
  113. 113.
    Hamel E, Nicolakakis N, Aboulkassim T, Ongali B et al (2008) Oxidative stress and cerebrovascular dysfunction in mouse models of Alzheimer’s disease. Exp Physiol 93:116–120PubMedCrossRefGoogle Scholar
  114. 114.
    Park L, Anrather J, Forster C, Kazama K et al (2004) Abeta-induced vascular oxidative stress and attenuation of functional hyperemia in mouse somatosensory cortex. J Cereb Blood Flow Metab 24:334–342PubMedCrossRefGoogle Scholar
  115. 115.
    Chrissobolis S, Faraci FM (2008) The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med 14:495–502PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Choi DH, Lee KH, Kim JH, Seo JH et al (2014) NADPH Oxidase 1, a Novel Molecular Source of ROS in Hippocampal Neuronal Death in Vascular Dementia. Antioxid Redox Signal 21:533–550PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Brunmark A, Cadenas E (1989) Redox and addition chemistry of quinoid compounds and its biological implications. Free Radic Biol Med 7:435–477PubMedCrossRefGoogle Scholar
  118. 118.
    Park L, Anrather J, Girouard H, Zhou P et al (2007) Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab 27:1908–1918PubMedCrossRefGoogle Scholar
  119. 119.
    Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A 101:4003–4008PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Sultana R, Poon HF, Cai J, Pierce WM et al (2006) Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol Dis 22:76–87PubMedCrossRefGoogle Scholar
  121. 121.
    Smith MA, Richey Harris PL, Sayre LM, Beckman JS et al (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17:2653–2657PubMedGoogle Scholar
  122. 122.
    Aoyama K, Matsubara K, Fujikawa Y, Nagahiro Y et al (2000) Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases. Ann Neurol 47:524–527PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cátia F. Lourenço
    • 1
  • Ana Ledo
    • 1
  • Rui M. Barbosa
    • 1
  • João Laranjinha
    • 1
    Email author
  1. 1.Center for Neuroscience and Cell Biology, Faculty of PharmacyUniversity of CoimbraCoimbraPortugal

Personalised recommendations