Inhaled Particulate Matter Leads to Myocardial Dysfunction

  • Pablo EvelsonEmail author
  • Timoteo Marchini
  • Mariana Garces
  • Lourdes Cáceres
  • Natalia Magnani
  • Silvia Alvarez
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 16)


Epidemiological studies have shown that the exposure to environmental particulate matter (PM) is associated with increased cardiopulmonary mortality rates. Daily changes in PM concentration have also been positively correlated with increased hospitalizations due to lower respiratory diseases, ischemic cardiovascular events, arrhythmias, and heart failure. Human and animal models have also shown a pulmonary and systemic inflammatory response and oxidative stress associated with the exposure to environmental particles which could, in turn, alter heart oxygen metabolism and cardiovascular function. Given that mitochondria play an essential role in cellular O2 and energetic metabolism, it has been suggested that mitochondrial dysfunction is a key feature in the development of cardiac alterations during the exposure to PM. This chapter is focused in the discussion of the different mechanisms triggered by PM exposure that may lead to myocardial dysfunction, emphasizing the role of the systemic proinflammatory mediators released after PM inhalation.


Air pollution Particulate matter Cardiac dysfunction Inflammation Oxidative stress Mitochondria 


  1. 1.
    World Health Organization (WHO) (2014) WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2014Google Scholar
  2. 2.
    Nel A (2005) Atmosphere. Air pollution-related illness: effects of particles. Science 308:804–806CrossRefPubMedGoogle Scholar
  3. 3.
    Brook RD (2008) Cardiovascular effects of air pollution. Clin Sci (Lond) 115:175–187CrossRefGoogle Scholar
  4. 4.
    D’Amato G, Cecchi L (2008) Effects of climate change on environmental factors in respiratory allergic diseases. Clin Exp Allergy 38:1264–1274CrossRefPubMedGoogle Scholar
  5. 5.
    Ghio AJ, Huang YC (2004) Exposure to concentrated ambient particles (CAPs): a review. Inhal Toxicol 16:53–59CrossRefPubMedGoogle Scholar
  6. 6.
    Kelly FJ, Fussell JC (2015) Air pollution and public health: emerging hazards and improved understanding of risk. Environ Geochem Health 37:631–649CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kelly FJ, Fussell JC (2012) Size, source and chemical composition as determinants of toxicity attributable to ambient particular matter. Atm Environ 60:504–526CrossRefGoogle Scholar
  8. 8.
    Pope CA, Muhlestein JB, May HT et al (2006) Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation 114:2443–2448CrossRefPubMedGoogle Scholar
  9. 9.
    Brook RD, Rajagopalan S, Pope CA et al (2010) Particulate matter air pollution and cardiovascular disease. An update of the Scientific Statement from the American Heart Association. Circulation 121:2331–2378CrossRefPubMedGoogle Scholar
  10. 10.
    Schins RJ, Lightbody P, Borm T et al (2004) Inflammatory effects of coarse and fine particulate matter in relation to chemical and biological constituents. Toxicol Appl Pharmacol 184:1–11CrossRefGoogle Scholar
  11. 11.
    Donaldson K, Stone V, Seaton A et al (2001) Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect 109:523–527CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zareba W, Nomura A, Couderc JP (2001) Cardiovascular effects of air pollution: what to measure in ECG? Environ Health Perspect 109:533–538CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pope CA III (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108:713–723CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Souza MB (1998) Respiratory changes due to long-term exposure to urban levels of air pollution. Chest 113:1312–1318CrossRefPubMedGoogle Scholar
  15. 15.
    Magnani N, Marchini T, Tasat D et al (2011) Time course of lung oxidative metabolism after exposure to ambient particles. Biochem Byophys Res Comm 412:667–672CrossRefGoogle Scholar
  16. 16.
    Dockery DW (1994) Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ Health Perspect 109:483–486CrossRefGoogle Scholar
  17. 17.
    Schwartz J (2001) Air pollution and blood markers of cardiovascular risk. Environ Health Perspect 109:405–409CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dreher KL, Jaskot RH, Lehmann JR et al (1997) Soluble transition metals mediate residual oil fly ash-induced acute lung injury. J Toxicol Environ Health 50:285–305CrossRefPubMedGoogle Scholar
  19. 19.
    Nurkiewicz TR, Porter DW, Barger M et al (2004) Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environ Health Perspect 112:1299–1306CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schaumann F, Borm PJ, Herbrich et al (2004) Metal-rich ambient particles (particulate matter 2.5) cause airway inflammation in healthy subjects. Am J Respir Crit Care Med 170:898–903Google Scholar
  21. 21.
    Marchini T, Magnani ND, Paz ML et al (2014) Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash. Toxicol Appl Pharmacol 274:274–282CrossRefPubMedGoogle Scholar
  22. 22.
    Oury T, Chang L, Marklund S et al (1994) Immunocytochemical localization of extracellular superoxide dismutase in human lung. Lab Invest 70:889–898PubMedGoogle Scholar
  23. 23.
    Jimenez L, Drost E, Gilmour P et al (2000) PM(10)-exposed macrophages stimulate a proinflammatory response in lung epithelial cells via TNF-alpha. Am J Physiol 282:L237–L248Google Scholar
  24. 24.
    Tao F, Gonzalez-Flecha B, Kobzik L (2003) Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radic Biol Med 35:327–340CrossRefPubMedGoogle Scholar
  25. 25.
    Gurgueira SA, Lawrence J, Coull B et al (2002) Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect 110:749–755CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Behndig AF, Mudway IS, Brown JL et al (2006) Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans. Eur Respyr J 27:359–365CrossRefGoogle Scholar
  27. 27.
    Fubini B, Fenoglio I, Ceschino R et al (2004) Relationship between the state of the surface of four commercial quartz flours and their biological activity in vitro and in vivo. Int J Hyg Environ Health 207:89–104CrossRefPubMedGoogle Scholar
  28. 28.
    Chen LC, Lippmann M (2009) Effects of metals within ambient air particulate matter (PM) on human health. Inhal Toxicol 21:1–31CrossRefPubMedGoogle Scholar
  29. 29.
    Sorensen M, Schins R, Hertel O et al (2005) Transition metals in personal samples of PM2.5 and oxidative stress in human volunteers. Cancer Epidemiol Biomarkers Prev 14:1340–1343CrossRefPubMedGoogle Scholar
  30. 30.
    Samet J, DeMarini D, Malling H (2004) Biomedicine. Do airborne particles induce heritable mutations? Science 304:971–972CrossRefPubMedGoogle Scholar
  31. 31.
    Brook RD, Franklin B, Cascio W et al (2004) Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 109:2655–2671CrossRefPubMedGoogle Scholar
  32. 32.
    Nemmar A, Hoet PH, Vanquickenborne B (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414CrossRefPubMedGoogle Scholar
  33. 33.
    Oberdörster G, Sharp Z, Atudorei V et al (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health 65:1531–1543CrossRefGoogle Scholar
  34. 34.
    Veronesi B, Oortgiesen M, Roy J et al (2000) Vanilloid (capsaicin) receptors influence inflammatory sensitivity in response to particulate matter. Toxicol Appl Pharmacol 169:66–76CrossRefPubMedGoogle Scholar
  35. 35.
    Chen LC, Hwang JS (2005) Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice. IV. Characterization of acute and chronic effects of ambient air fine particulate matter exposures on heart-rate variability. Inhal Toxicol 17:209–216CrossRefPubMedGoogle Scholar
  36. 36.
    Wichers LB, Nolan JP, Winsett DW et al (2004) Effects of instilled combustion-derived particles in spontaneously hypertensive rats. Part I: Cardiovascular responses. Inhal Toxicol 16:391–405CrossRefPubMedGoogle Scholar
  37. 37.
    Calderon-Garciduenas L, Gambling TM, Acuna H et al (2001) Canines as sentinel species for assessing chronic exposures to air pollutants: cardiac pathology. Toxicol Sci 61:356–367CrossRefPubMedGoogle Scholar
  38. 38.
    Kreyling WG, Semmler M, Erbe F et al (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health 65:1513–1530CrossRefGoogle Scholar
  39. 39.
    Bagate K, Meiring JJ, Cassee FR et al (2004) The effect of particulate matter on resistance and conductance vessels in the rat. Inhal Toxicol 16:431–436CrossRefPubMedGoogle Scholar
  40. 40.
    Dye JA, Adler KB, Richards JH et al (1997) Epithelial injury induced by exposure to residual oil fly-ash particles: role of reactive oxygen species? Am J Respir Cell Mol Biol 17:625–633CrossRefPubMedGoogle Scholar
  41. 41.
    Li N, Sioutas C, Cho A et al (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    van Eeden SF, Tan WC, Suwa T et al (2001) Cytokines are involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM10). Am J Respir Crit Care Med 164:826–830CrossRefPubMedGoogle Scholar
  43. 43.
    Campbell A, Oldham M, Becaria A et al (2005) Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology 26:133–140CrossRefPubMedGoogle Scholar
  44. 44.
    Salvi S, Blomberg A, Rudell B et al (1999) Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med 159:702–709CrossRefPubMedGoogle Scholar
  45. 45.
    Tan WC, Qiu D, Liam BL et al (2000) The human bone marrow response to acute air pollution caused by forest fires. Am J Respir Crit Care Med 161:1213–1217CrossRefPubMedGoogle Scholar
  46. 46.
    Kim K, Kabir E, Kabir S (2015) A review on the human health impact of airborne particulate matter. Environ Int 74:136–143CrossRefPubMedGoogle Scholar
  47. 47.
    Knight-Lozano CA, Young CG, Burow DL et al (2002) Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues. Circulation 105:849–854CrossRefPubMedGoogle Scholar
  48. 48.
    Alvarez S, Evelson P (2007) Nitric oxide and oxygen metabolism in inflammatory conditions: sepsis and exposition to polluted ambients. Front Biosci 12:964–974CrossRefPubMedGoogle Scholar
  49. 49.
    Beer M, Seyfarth T, Sandstede J (2002) Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with 31P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 40:1267–1274CrossRefPubMedGoogle Scholar
  50. 50.
    Neubauer S (2007) The failing heart: an engine out of fuel. N Engl J Med 356:1140–1151CrossRefPubMedGoogle Scholar
  51. 51.
    Nicholls DG, Ferguson SJ (2002) Bioenergetics, 3rd edn. Academic, LondonGoogle Scholar
  52. 52.
    Ghio AJ, Silbajoris R, Carson JL et al (2002) Biologic effects of oil fly ash. Environ Health Perspect 110:89–94CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Schroeder WH, Dobson M, Kane D et al (1987) Toxic trace elements associated with airborne particulate matter: a review. JAPCA 37:1267–1285CrossRefPubMedGoogle Scholar
  54. 54.
    Shuster-Meiseles T, Shafer MM, Heo J et al (2016) ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environments. Environ Res 146:252–262CrossRefPubMedGoogle Scholar
  55. 55.
    Upadhyay D, Panduri V, Ghio A et al (2003) Particulate matter induces alveolar epithelial cell DNA damage and apoptosis: role of free radicals and mitochondria. Am J Respir Cell Mol Biol 29:180–187CrossRefPubMedGoogle Scholar
  56. 56.
    Magnani N, Marchini T, Vanasco V et al (2013) Reactive oxygen species produced by NADPH oxidase and mitochondrial dysfunction in lung after an acute exposure to Residual Oil Fly Ashes. Toxicol Appl Pharmacol 270:31–38CrossRefPubMedGoogle Scholar
  57. 57.
    Di Pietro A, Visalli G, Baluce B et al (2011) Multigenerational mitochondrial alterations in pneumocytes exposed to oil fly ash metals. Int J Hyg Environ Health 214:138–144CrossRefPubMedGoogle Scholar
  58. 58.
    Yosgizaki Akinaga LM, Lichtenfels AJ, Carvalho-Oliveira R et al (2009) Effects of chronic exposure to air pollution from Sao Paulo city on the coronary of swiss mice from birth to adulthood. Toxicol Pathol 37:306–314CrossRefPubMedGoogle Scholar
  59. 59.
    Marchini T, Magnani N, D’Annunzio V et al (2013) Impaired cardiac mitochondrial function and contractile reserve following an acute exposure to environmental particulate matter. Biochim Biophys Acta 1830:2545–2552CrossRefPubMedGoogle Scholar
  60. 60.
    Knight DM, Trinh H, Le J et al (1993) Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol Immunol 30:1443–1453CrossRefPubMedGoogle Scholar
  61. 61.
    Marchini T, D’Annunzio V, Paz ML et al (2015) Selective TNF-α targeting with infliximab attenuates impaired oxygen metabolism and contractile function induced by an acute exposure to air particulate matter. Am J Physiol Heart Circ Physiol 309:H1621–H1628PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pablo Evelson
    • 1
    Email author
  • Timoteo Marchini
    • 1
  • Mariana Garces
    • 1
  • Lourdes Cáceres
    • 1
  • Natalia Magnani
    • 1
  • Silvia Alvarez
    • 1
  1. 1.Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y TécnicasInstituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y BioquímicaBuenos AiresArgentina

Personalised recommendations