Reactive Oxygen Species Are Involved in Myocardial Remote Ischemic Preconditioning

  • Martín Donato
  • Diamela T. Paez
  • Pablo Evelson
  • Ricardo Jorge GelpiEmail author
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 16)


Ischemic heart disease is the leading cause of death worldwide. There has been a continued search for better therapeutic strategies that would reduce myocardial ischemia/reperfusion injury. Remote ischemic preconditioning (rIPC) was first introduced in 1993 by Przyklenk et al who reported that brief regional occlusion-reperfusion episodes in one vascular bed of the heart render protection to remote myocardial tissue. Subsequently, different studies have showed that rIPC applied to the kidney, liver, mesentery, and skeletal muscle, have all exhibited cardioprotective effects. The main purpose of this chapter is to summarize the advances in understanding the molecular mechanisms of rIPC, including those related to oxidative stress. Detailed understanding of the pathways involved in cardioprotection induced by rIPC is expected to lead to the development of new drugs to reduce the consequences of prolonged ischemia.


Myocardial infarction Remote preconditioning Cardioprotection 


  1. 1.
    Przyklenk K, Bauer B, Ovize M, Kloner RA et al (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87:893–899CrossRefPubMedGoogle Scholar
  2. 2.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136CrossRefPubMedGoogle Scholar
  3. 3.
    Wever KE, Warlé MC, Wagener FA, Van der Hoorn JW et al (2011) Remote ischaemic preconditioning by brief hind limb ischaemia protects against renal ischaemia-reperfusion injury: the role of adenosine. Nephrol Dial Transplant 26:3108–3117CrossRefPubMedGoogle Scholar
  4. 4.
    Dickson EW, Lorbar M, Porcaro WA, Fenton RA et al (1999) Rabbit heart can be “preconditioned” via transfer of coronary effluent. Am J Physiol 277:H2451–H2457PubMedGoogle Scholar
  5. 5.
    Mastitskaya S, Marina N, Gourine A, Gilbey MP et al (2012) Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc Res 95:487–494CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hausenloy DJ, Yellon DM (2008) Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res 79:377–386CrossRefPubMedGoogle Scholar
  7. 7.
    Kingma JG Jr, Simard D, Voisine P, Rouleau JR (2011) Role of the autonomic nervous system in cardioprotection by remote preconditioning in isoflurane-anaesthetized dogs. Cardiovasc Res 89:384–391CrossRefPubMedGoogle Scholar
  8. 8.
    Steensrud T, Li J, Dai X, Manlhiot C, Kharbanda RK et al (2010) Pretreatment with the nitric oxide donor SNAP or nerve transection blocks humoral preconditioning by remote limb ischemia or intra-arterial adenosine. Am J Physiol Heart Circ Physiol 299:H1598–H1603CrossRefPubMedGoogle Scholar
  9. 9.
    Donato M, Buchholz B, Rodríguez M, Pérez V et al (2013) Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. ExpPhysiol 98:425–434Google Scholar
  10. 10.
    Takaoka A, Nakae I, Mitsunami K, Yabe T et al (1999) Renal ischemia/reperfusion remotely improves myocardial energy metabolism during myocardial ischemia via adenosine receptors in rabbits: effects of “remote preconditioning”. J Am Coll Cardiol 33:556–564CrossRefPubMedGoogle Scholar
  11. 11.
    Schoemaker RG, van Heijningen CL (2000) Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol 278:H1571–H1576PubMedGoogle Scholar
  12. 12.
    Pickard J, Bøtker H, Crimi G, Davidson B et al (2015) Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop. Basic Res Cardiol 110:453–467CrossRefPubMedGoogle Scholar
  13. 13.
    Jones WK, Fan GC, Liao S, Zhang JM et al (2009) Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation 120(11 Suppl):S1–S9CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Basalay M, Barsukevich V, Mastitskaya S, Mrochek A et al (2012) Remote ischaemic pre- and delayed postconditioning similar degree of cardioprotection but distinct mechanisms. Exp Physiol 97:908–917CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Skyschally A, Gent S, Amanakis G, Schulte C et al (2015) Across-species transfer of protection by remote ischemic preconditioning with species-specific myocardial signal transduction by reperfusion injury salvage kinase and survival activating factor enhancement pathways. Circ Res 117:279–288CrossRefPubMedGoogle Scholar
  16. 16.
    Kristiansen SB, Henning O, Kharbanda RK, Nielsen-Kudsk JE et al (2005) Remote preconditioning reduces ischemic injury in the explanted heart by a KATP channel-dependent mechanism. Am J Physiol Heart Circ Physiol 288:H1252–H1256CrossRefPubMedGoogle Scholar
  17. 17.
    Wolfrum S, Nienstedt J, Heidbreder M, Schneider K et al (2005) Calcitonin gene related peptide mediates cardioprotection by remote preconditioning. Regul Pept 127:217–224CrossRefPubMedGoogle Scholar
  18. 18.
    Patel HH, Moore J, Hsu AK, Gross GJ (2002) Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. J Mol Cell Cardiol 34:1317–1323CrossRefPubMedGoogle Scholar
  19. 19.
    Hajrasouliha AR, Tavakoli S, Ghasemi M, Jabehdar-Maralani P et al (2008) Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart. Eur J Pharmacol 579:246–252CrossRefPubMedGoogle Scholar
  20. 20.
    Kant R, Diwan V, Jaggi AS, Singh N et al (2008) Remote renal preconditioning-induced cardioprotection: a key role of hypoxia inducible factor-prolyl 4-hydroxylases. Mol Cell Biochem 312:25–31CrossRefPubMedGoogle Scholar
  21. 21.
    Lang SC, Elsasser A, Scheler C, Vetter S et al (2006) Myocardial preconditioning and remote renal preconditioning–identifying a protective factor using proteomic methods? Basic Res Cardiol 101:149–158CrossRefPubMedGoogle Scholar
  22. 22.
    Przyklenk K, Whittaker P (2011) Remote ischemic preconditioning: current knowledge, unresolved questions, and future priorities. J Cardiovasc Pharmacol Ther 16:255–259CrossRefPubMedGoogle Scholar
  23. 23.
    Davidson SM, Selvaraj P, He D, Boi-Doku C, Yellon RL et al (2013) Remote ischaemic preconditioning involves signalling through the SDF-1alpha/CXCR4 signalling axis. Basic Res Cardiol 108:377CrossRefPubMedGoogle Scholar
  24. 24.
    Giricz Z, Varga ZV, Baranyai T, Sipos P et al (2014) Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J Mol Cell Cardiol 68:75–78CrossRefPubMedGoogle Scholar
  25. 25.
    Rassaf T, Ferdinandy P, Schulz R (2014) Nitrite in organ protection. Br J Pharmacol 171:1–11CrossRefPubMedGoogle Scholar
  26. 26.
    Li J, Rohailla S, Gelber N, Rutka J et al (2014) MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 109:423CrossRefPubMedGoogle Scholar
  27. 27.
    Hibert P, Prunier-Mirebeau D, Beseme O, Chwastyniak M et al (2013) Apolipoprotein a-I is a potential mediator of remote ischemic preconditioning. PLoS One 8:e77211CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Redington KL, Disenhouse T, Strantzas SC, Gladstone R et al (2012) Remote cardioprotection by direct peripheral nerve stimulation and topical capsaicin is mediated by circulating humoral factors. Basic Res Cardiol 107:241CrossRefPubMedGoogle Scholar
  29. 29.
    Jensen RV, Stottrup NB, Kristiansen SB, Botker HE (2012) Release of a humoral circulating cardioprotective factor by remote ischemic preconditioning is dependent on preserved neural pathways in diabetic patients. Basic Res Cardiol 107:285CrossRefPubMedGoogle Scholar
  30. 30.
    Lim SY, Hausenloy DJ (2012) Remote ischemic conditioning: from bench to bedside. Front Physiol 3:27CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Heinen NM, Pütz VE, Görgens JI, Huhn R et al (2011) Cardioprotection by remote ischemic preconditioning exhibits a signaling pattern different from local ischemic preconditioning. Shock 36:45–53CrossRefPubMedGoogle Scholar
  32. 32.
    Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699CrossRefPubMedGoogle Scholar
  33. 33.
    Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151CrossRefPubMedGoogle Scholar
  34. 34.
    Downey JM, Krieg T, Cohen MV (2008) Mapping preconditioning's signaling pathways: an engineering approach. Ann NY Acad Sci 1123:187–196CrossRefPubMedGoogle Scholar
  35. 35.
    Li SJ, Wu YN, Kang Y, Yin YQ et al (2010) Noninvasive limb ischemic preconditioning protects against myocardial I/R injury in rats. J Surg Res 164:162–168CrossRefPubMedGoogle Scholar
  36. 36.
    Breivik L, Helgeland E, Aarnes EK, Mrdalj J et al (2011) Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion. Basic Res Cardiol 106:135–145CrossRefPubMedGoogle Scholar
  37. 37.
    Wolfrum S, Schneider K, Heidbreder M, Nienstedt J et al (2002) Remote preconditioning protects the heart by activating myocardial PKC epsilon-isoform. Cardiovasc Res 55:583–589CrossRefPubMedGoogle Scholar
  38. 38.
    Donato M, Goyeneche MA, Garces M, Marchini T et al (2016) Myocardial triggers involved in activation of remote ischaemic preconditioning. Exp Physiol 101:708–716CrossRefPubMedGoogle Scholar
  39. 39.
    Krieg T, Landsberger M, Alexeyev MF, Felix SB et al (2003) Activation of Akt is essential for acetylcholine to trigger generation of oxygen free radicals. Cardiovasc Res 58:196–202CrossRefPubMedGoogle Scholar
  40. 40.
    Kalogeris T, Bao Y, Korthuis RJ1 (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hausenloy DJ, Iliodromitis EK, Andreadou I, Papalois A et al (2012) Investigating the signal transduction pathways underlying remote ischemic conditioning in the porcine heart. Cardiovasc Drugs Ther 26:87–93CrossRefPubMedGoogle Scholar
  42. 42.
    Dow J, Bhandari A, Simkhovich BZ, Hale SL et al (2012) The effect of acute versus delayed remote ischemic preconditioning on reperfusion induced ventricular arrhythmias. J Cardiovasc Electrophysiol 23:1374–1383CrossRefPubMedGoogle Scholar
  43. 43.
    Brandenburger T, Huhn R, Galas A, Pannen BH et al (2014) Remote ischemic preconditioning preserves Connexin 43 phosphorylation in the rat heart in vivo. J Transl Med 12:228CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Konstantinov IE, Li J, Cheung MM, Shimizu M et al (2005) Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a Katp channel-dependent mechanism. Transplantation 79:1691–1695CrossRefPubMedGoogle Scholar
  45. 45.
    Sun J, Aponte AM, Kohr MJ, Tong G et al (2013) Essential role of nitric oxide in acute ischemic preconditioning: S-nitros(yl)ation versus sGC/cGMP/PKG signaling? Free Radic Biol Med 54:105–112CrossRefPubMedGoogle Scholar
  46. 46.
    Antunes F, Boveris A, Cadenas E (2004) On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc Natl Acad Sci U S A 101:16774–16779CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yao Z, Gross GJ (1993) Role of nitric oxide, muscarinic receptors, and the ATP-sensitive K+ channel in mediating the effects of acetylcholine to mimic preconditioning in dogs. Circ Res 73(6):1193–1201CrossRefPubMedGoogle Scholar
  48. 48.
    D’Autréaux B, Toledano M (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824CrossRefPubMedGoogle Scholar
  49. 49.
    Weinbrenner C, Schulze F, Sárváry L, Strasser RH (2004) Remote preconditioning by infrarenal aortic occlusion is operative via delta1-opioid receptors and free radicals in vivo in the rat heart. Cardiovasc Res 61:591–599CrossRefPubMedGoogle Scholar
  50. 50.
    Tullio F, Angotti C, Perrelli MG, Penna C et al (2013) Redox balance and cardioprotection. Basic Res Cardiol 108:392CrossRefPubMedGoogle Scholar
  51. 51.
    Fornazari M, de Paula JG, Castilho RF, Kowaltowski AJ (2008) Redox properties of the adenoside triphosphate-sensitive K+ channel in brain mitochondria. J Neurosci Res 86:1548–1556CrossRefPubMedGoogle Scholar
  52. 52.
    Neye N, Enigk F, Shiva S, Habazettl H et al (2012) Inhalation of NO during myocardial ischemia reduces infarct size and improves cardiac function. Intensive Care Med 38:1381–1391CrossRefPubMedGoogle Scholar
  53. 53.
    Birnbaum Y, Hale SL, Kloner RA (1997) Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation 96:1641–1646CrossRefPubMedGoogle Scholar
  54. 54.
    Gho BC, Schoemaker RG, Van den Doel MA, Duncker DJ et al (1996) Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94:2193–2200CrossRefPubMedGoogle Scholar
  55. 55.
    Tokuno S, Hinokiyama K, Tokuno K, Löwbeer C et al (2002) Spontaneous ischemic events in the brain and heart adapt the hearts of severely atherosclerotic mice to ischemia. Arterioscler Thromb Vasc Biol 22:995–1001CrossRefPubMedGoogle Scholar
  56. 56.
    Walsh SR, Tang T, Sadat U, Dutka DP et al (2007) Cardioprotection by remote ischaemic preconditioning. Br J Anaesth 99:611–616CrossRefPubMedGoogle Scholar
  57. 57.
    Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G et al (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114:1601–1610CrossRefPubMedGoogle Scholar
  58. 58.
    Chouchani ET, Methner C, Nadtochiy SM et al (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19:753–759CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Abu-Amara M, Yang SY, Quaglia A, Rowley P et al (2011) Nitric oxide is an essential mediator of the protective effects of remote ischaemic preconditioning in a mouse model of liver ischaemia/reperfusion injury. Clin Sci (Lond) 121:257–266CrossRefGoogle Scholar
  60. 60.
    Bolli R (2000) The late phase of preconditioning. Circ Res 87:972–983CrossRefPubMedGoogle Scholar
  61. 61.
    Sparacino-Watkins CE, Tejero J, Sun B, Gauthier MC et al (2014) Nitrite reductase and nitric-oxide synthase activity of the mitochondrial molybdopterin enzymes mARC1 and mARC2. J Biol Chem 289:10345–10358CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Tejero J, Gladwin MT (2014) The globin superfamily: functions in nitric oxide formation and decay. Biol Chem 395:631–639CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dong HL, Zhang Y, Su BX, Zhu ZH et al (2010) Limb remote ischemic preconditioning protects the spinal cord from ischemia-reperfusion injury: a newly identified nonneuronal but reactive oxygen species-dependent pathway. Anesthesiology 112:881–891CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Martín Donato
    • 1
    • 2
  • Diamela T. Paez
    • 1
  • Pablo Evelson
    • 3
  • Ricardo Jorge Gelpi
    • 1
    • 2
    Email author
  1. 1.Institute of Cardiovascular Pathophysiology (INFICA), Department of Pathology, Faculty of MedicineUniversity of Buenos AiresBuenos AiresArgentina
  2. 2.Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Faculty of MedicineUniversity of Buenos AiresBuenos AiresArgentina
  3. 3.Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Faculty of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations