Mitochondrial Complex I Inactivation After Ischemia-Reperfusion in the Stunned Heart

  • Laura B. ValdezEmail author
  • Silvina S. Bombicino
  • Darío E. Iglesias
  • Ivana A. Rukavina-Mikusic
  • Verónica D’Annunzio
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 16)


Mitochondrial complex I (NADH-ubiquinone oxidoreductase) catalyzes the transfer of two electrons from NADH via flavin mononucleotide (FMN) and a series of iron-sulfur centers (Fe-S) to ubiquinone (UQ) in a reaction associated with proton translocation across the inner membrane, contributing to the proton-motive force. Complex I produces superoxide anion (O2) through the autoxidation reaction of the flavin-semiquinone (FMNH•) with molecular oxygen. Superoxide reacts with nitric oxide (NO) to yield peroxynitrite (ONOO), a strong oxidant and nitrating compound. When the steady-state concentration of ONOO is enhanced, tyrosine nitration, protein oxidation and damage to Fe-S centers take place, leading to a sustained complex I inhibition. Dysfunction of complex I was found in a number of clinical conditions such as Parkinson’s disease, ischemia-reperfusion, endotoxic shock, and aging. We have shown that the ventricular dysfunction observed in myocardial stunning is associated with a mitochondrial dysfunction that includes partial inactivation of complex I and mitochondrial nitric oxide synthase (mtNOS) activities, oxidative and nitrosative damages and increased H2O2 and ONOO production rates. Moreover, adenosine proved to be effective in attenuating ventricular dysfunction and also in protecting from mitochondrial dysfunction and complex I syndrome.


Stunned heart Complex I Mitochondrial nitric oxide synthase (mtNOS) Hydrogen peroxide Nitric oxide Superoxide anion Peroxynitrite 



This work was supported by grants from the University of Buenos Aires (UBACYT 20020110100140, 20020130100731 and 20020130100557), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2013-0373, 2014-0964), and Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 11220110100444).


  1. 1.
    Bolli R, Zhu W, Thornby J et al (1988) Time course and determinants of recovery of function after reversible ischemia in conscious dogs. Am J Physiol 254:H102–H114PubMedGoogle Scholar
  2. 2.
    Bolli R (1990) Mechanism of myocardial “stunning”. Circulation 82:723–738CrossRefPubMedGoogle Scholar
  3. 3.
    Olivetti G, Carpasso J, Meggs L et al (1991) Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circulation 68:856–869CrossRefGoogle Scholar
  4. 4.
    Heyndrickx GG, Baig H, Nellens P et al (1978) Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physiol 234:H653–H659PubMedGoogle Scholar
  5. 5.
    Donato M, Gelpi RJ (2003) Adenosine and cardioprotection during reperfusion-an overview. Mol Cell Biochem 251:153–159CrossRefPubMedGoogle Scholar
  6. 6.
    Vinogradov AD, Grivennikova VG (2001) The mitochondrial complex I: progress in understanding the catalytic properties. IUBMB Life 52:129–134CrossRefPubMedGoogle Scholar
  7. 7.
    Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451CrossRefPubMedGoogle Scholar
  8. 8.
    Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hirst J (2013) Mitochondrial complex I. Annu Rev Biochem 82:551–575CrossRefPubMedGoogle Scholar
  10. 10.
    Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Boveris A, Cadenas E (2000) Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life 50:245–250CrossRefPubMedGoogle Scholar
  12. 12.
    Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. Biochem J 134:617–630CrossRefGoogle Scholar
  13. 13.
    Navarro A, Boveris A (2009) Brain mitochondrial dysfunction and oxidative damage in Parkinson’s disease. J Bioenerg Biomembr 41:517–521CrossRefPubMedGoogle Scholar
  14. 14.
    Navarro A, Boveris A, Bández MJ et al (2009) Human brain cortex: mitochondrial oxidative damage and adaptative response in Parkinson disease and in dementia Lewy bodies. Free Rad Biol Med 46:1574–1580CrossRefPubMedGoogle Scholar
  15. 15.
    Hensley K, Kotake Y, Sang H et al (2000) Dietary choline restriction causes complex I dysfunction and increased H2O2 generation in liver mitochondria. Carcinogenesis 21:983–989CrossRefPubMedGoogle Scholar
  16. 16.
    Navarro A, Bandez MJ, Gomez C et al (2010) Effects of rotenone and pyridaben on complex I electron transfer and on mitochondrial nitric oxide synthase functional activity. J Bioenerg Biomembr 42:405–412CrossRefPubMedGoogle Scholar
  17. 17.
    Navarro A, Bandez MJ, Lopez-Cepero JM et al (2011) High doses of vitemin E improve mitochondrial dysfunction in rat hyppocampus and frontal cortex upon aging. Am J Physiol Regul Integr Comp Physiol 300:R827–R834CrossRefPubMedGoogle Scholar
  18. 18.
    Valdez LB, Zaobornyj T, Bombicino S et al (2011) Complex I syndrome in myocardial stunning and the effect of adenosine. Free Radic Biol Med 51:1203–1212CrossRefPubMedGoogle Scholar
  19. 19.
    Valdez LB, Zaobornyj T, Bombicino SS et al (2011) Regulation of heart mitochondrial nitric oxide synthase (mtNOS) by oxygen. In: Cadenas S (ed) Mitochondrial pathophysiology. Transworld Research Network, Kerala, pp 29–42Google Scholar
  20. 20.
    Yin F, Boveris A, Cadenas E (2014) Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal 20:353–371CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yin F, Cadenas E (2015) Mitochondria: the cellular hub of the dynamic coordinated network. Antioxid Redox Signal 22:961–964CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Boveris A, Valdez LB, Zaobornyj T, Bustamante J (2006) Mitochondrial metabolic states regulate nitric oxide and hydrogen peroxide diffusion to the cytosol. Biochim Biophys Acta 1757:535–542CrossRefPubMedGoogle Scholar
  23. 23.
    Tatoyan A, Giulivi C (1998) Purification and characterization of a nitric oxide synthase from rat liver mitochondria. J Biol Chem 273:11044–11048CrossRefPubMedGoogle Scholar
  24. 24.
    Giulivi C, Poderoso JJ, Boveris A (1998) Production of nitric oxide by mitochondria. J Biol Chem 273:11038–11043CrossRefPubMedGoogle Scholar
  25. 25.
    Elfering SL, Sarkela TM, Giulivi C (2002) Biochemistry of mitochondrial nitric oxide synthase. J Biol Chem 277:38079–38086CrossRefPubMedGoogle Scholar
  26. 26.
    Valdez LB, Zaobornyj T, Boveris A (2006) Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochim Biophys Acta 1757:166–172CrossRefPubMedGoogle Scholar
  27. 27.
    Valdez LB, Alvarez S, Lores-Arnaiz S et al (2000) Reactions of peroxynitrite in the mitochondrial matrix. Free Radic Biol Med 29:349–356CrossRefPubMedGoogle Scholar
  28. 28.
    Franco MC, Arciuch VG, Peralta JG et al (2006) Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric oxide synthase. J Biol Chem 281:4779–4786CrossRefPubMedGoogle Scholar
  29. 29.
    Parihar MS, Nazarewicz RR, Kincaid E et al (2008) Association of mitochondrial nitric oxide synthase activity with respiratorty chain complex I. Biochem Biophys Res Commun 366:23–28CrossRefPubMedGoogle Scholar
  30. 30.
    Parihar MS, Parihar A, Villamena FA et al (2008) Inactivation of mitochondrial respiratory chain complex I leads mitochondrial nitric oxide synthase to become pro-oxidative. Biochem Biophys Res Commun 367:761–767CrossRefPubMedGoogle Scholar
  31. 31.
    Valdez LB, Boveris A (2007) Mitochondrial nitric oxide synthase, a voltage-dependent enzyme, is responsible for nitric oxide diffusion to cytosol. Front Biosci 12:1210–1219CrossRefPubMedGoogle Scholar
  32. 32.
    Kissner R, Nauser T, Bugnon P et al (1997) Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique and pulse radiolysis. Chem Res Toxicol 10:1285–1292CrossRefPubMedGoogle Scholar
  33. 33.
    McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  34. 34.
    Poderoso JJ, Carreras MC, Schöpfer F et al (1999) The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance. Free Radic Biol Med 26:925–935CrossRefPubMedGoogle Scholar
  35. 35.
    Antunes F, Boveris A, Cadenas E (2004) On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc Natl Acad Sci U S A 101:16774–16779CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Boveris A, Stoppani AO (1970) Inhibition of electron and energy transfer in mitochondria by 19-nor-ethynyltestosterone acetate. Arch Biochem Biophys 141:641–655CrossRefPubMedGoogle Scholar
  37. 37.
    Costa LE, Boveris A, Koch OR, Taquini AC (1988) Liver and heart mitochondria in rats submitted to chronic hypobaric hypoxia. Am J Physiol 255:C123–C129PubMedGoogle Scholar
  38. 38.
    Venardos KM, Zatta AJ, Marshall T et al (2009) Reduced L-arginine transport contributes to the pathogenesis of myocardial ischemia-reperfusion injury. J Cell Biochem 108:156–168CrossRefPubMedGoogle Scholar
  39. 39.
    Marban E, Kitakaze M, Koretsune Y et al (1990) Quantification of [Ca2+] in perfused hearts: critical evaluation of 5F-BAPTA and the nuclear magnetic resonance method as applied for the study of ischemia and reperfusion. Circ Res 66:1255–1267CrossRefPubMedGoogle Scholar
  40. 40.
    Ogawa T, Miura T, Kazuaki S, Limura OJ (1996) Activation of adenosine receptors before ischemia enhances tolerance against myocardial stunning in the rabbit heart. J Am Coll Cardiol 27:225–233CrossRefPubMedGoogle Scholar
  41. 41.
    Boveris A, Carreras MC, Poderoso JJ (2010) The regulation of cell energetics and mitochondrial signaling by nitric oxide. In: Ignarro L (ed) Nitric oxide. Elsevier Academic Press, London, pp 441–482CrossRefGoogle Scholar
  42. 42.
    Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ (2006) Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J Pharmacol Exp Ther 319:1405–1412Google Scholar
  43. 43.
    Shiva S, Sack MN, Greer JJ et al (2007) Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204:2089–2102CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Duranski MR, Greer JJM, Dejam A et al (2005) Cytoprotective effects of nitrite during in vivo ischemia–reperfusion of heart and liver. J Clin Invest 115:232–1240CrossRefGoogle Scholar
  45. 45.
    Prime TA, Blaikie FH, Evans C et al (2009) A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc Natl Acad Sci U S A 106:10764–10769CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chouchani ET, Methner C, Nadtochiy SM et al (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nature Med 19:753–759CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hurd TR, Costa NJ, Dahm CC et al (2005) Glutathionylation of mitochondrial proteins. Antioxid Redox Signal 7:999–1010CrossRefPubMedGoogle Scholar
  48. 48.
    Mailloux RJ, Willmore WG (2014) S-glutathionylation reactions in mitochondrial function and disease. Front Cell Dev Biol
  49. 49.
    Chang AH, Sancheti H, Garcia J et al (2014) Respiratory substrates regulate S-nitrosylation of mitochondrial proteins through a thiol-dependent pathway. Chem Res Toxicol 27:794–804CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Drose S, Brandt U, Wittig I (2014) Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim Biophys Acta 1844:1344–1354CrossRefPubMedGoogle Scholar
  51. 51.
    Hurd TR, Requejo R, Filipovska A et al (2008) Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J Biol Chem 283:24801–24815CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chen J, Chen CL, Rawale S et al (2010) Peptide-based antibodies against glutathione-binding domain suppress superoxide production mediated by mitochondrial complex I. J Biol Chem 285:3168–3180CrossRefPubMedGoogle Scholar
  53. 53.
    Kumar V, Kleffmann T, Hampton MB et al (2013) Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry. Free Radic Biol Med 58:109–117CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Laura B. Valdez
    • 1
    Email author
  • Silvina S. Bombicino
    • 1
  • Darío E. Iglesias
    • 1
  • Ivana A. Rukavina-Mikusic
    • 1
  • Verónica D’Annunzio
    • 2
  1. 1.Institute of Biochemistry and Molecular Medicine (IBIMOL; UBA-CONICET), Physical Chemistry Division, School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina
  2. 2.Institute of Biochemistry and Molecular Medicine (IBIMOL; UBA-CONICET), Pathology Division, School of MedicineUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations