Regulation of Protein Nitrosylation by Thioredoxin 1

  • Narayani Nagarajan
  • Junichi SadoshimaEmail author
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 16)


Addition of an SNO group to a cysteine thiol in a protein is called protein S-nitrosylation. When the donor of the SNO group is another protein, then the transfer is referred to as trans-nitrosylation. One key protein that mediates trans-nitrosylation and denitrosylation is thioredoxin1 (Trx1). Trx1 is a 12 kDa redox protein with five cysteine residues: Cys32, 35, 62, 69 and 73. Factors such as pH conditions and cysteine residue redox status affect the S-nitrosylation of Trx1. Several studies have reported that Trx1 promotes trans-nitrosylation of caspase-3, ASK1, and peroxiredoxin-1. On the other hand, Trx1 can trigger denitrosylation of SNO-caspase-3, SNO-metallothionein, SNO-albumin, SNO-caspase-8, GAPDH, annexin-1, etc. By regulating the balance between S-nitrosylation and denitrosylation, Trx1 helps maintain the nitroso-redox balance in the cell. Trx1-mediated S-nitrosylation and denitrosylation of proteins affect several cellular functions, including apoptosis, heme protein maturation and insertion, and exocytosis as well as various pathophysiological conditions, such as inflammation, cancer and cardiovascular diseases. In this chapter, we shall discuss in detail the molecular mechanism of Trx1-mediated trans-nitrosylation and denitrosylation and its importance in the cellular milieu.


Thioredoxin 1 Protein S-nitrosylation Denitrosylation Trans-nitrosylation Cardiovascular diseases Cancer Inflammation 


  1. 1.
    Stamler JS, Simon DI, Osborne JA et al (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A 89:444–448CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Murphy E, Kohr M, Menazza S et al (2014) Signaling by S-nitrosylation in the heart. J Mol Cell Cardiol 73:18–25CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Arnelle DR, Stamler JS (1995) NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 318:279–285CrossRefPubMedGoogle Scholar
  4. 4.
    Foster MW, McMahon TJ, Stamler JS (2003) S-nitrosylation in health and disease. Trends Mol Med 9:160–168CrossRefPubMedGoogle Scholar
  5. 5.
    Hess DT, Matsumoto A, Kim SO et al (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166CrossRefPubMedGoogle Scholar
  6. 6.
    Broniowska KA, Hogg N (2012) The chemical biology of S-nitrosothiols. Antioxid Redox Signal 17:969–980CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Li Q, Lancaster JR Jr (2012) A conspectus of cellular mechanisms of nitrosothiol formation from nitric oxide. Forum Immunopathol Dis Therap 3:183–191CrossRefGoogle Scholar
  8. 8.
    Inoue K, Akaike T, Miyamoto Y et al (1999) Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. J Biol Chem 274:27069–27075CrossRefPubMedGoogle Scholar
  9. 9.
    Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10:721–732PubMedGoogle Scholar
  10. 10.
    Romero JM, Bizzozero OA (2009) Intracellular glutathione mediates the denitrosylation of protein nitrosothiols in the rat spinal cord. J Neurosci Res 87:701–709CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Stamler JS, Jaraki O, Osborne J et al (1992) Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci U S A 89:7674–7677CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sun J, Xu L, Eu JP et al (2003) Nitric oxide, NOC-12, and S-nitrosoglutathione modulate the skeletal muscle calcium release channel/ryanodine receptor by different mechanisms. An allosteric function for O2 in S-nitrosylation of the channel. J Biol Chem 278:8184–8189CrossRefPubMedGoogle Scholar
  13. 13.
    Wang Z (2012) Protein S-nitrosylation and cancer. Cancer Lett 320:123–129CrossRefPubMedGoogle Scholar
  14. 14.
    Foster MW, Hess DT, Stamler JS (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 15:391–404CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tong G, Aponte AM, Kohr MJ et al (2014) Postconditioning leads to an increase in protein S-nitrosylation. Am J Physiol Heart Circ Physiol 306:H825–H832CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sun J, Murphy E (2010) Protein S-nitrosylation and cardioprotection. Circ Res 106:285–296CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Murphy E, Kohr M, Sun J et al (2012) S-nitrosylation: a radical way to protect the heart. J Mol Cell Cardiol 52:568–577CrossRefPubMedGoogle Scholar
  18. 18.
    Sun J, Morgan M, Shen RF et al (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101:1155–1163CrossRefPubMedGoogle Scholar
  19. 19.
    Nakamura T, Lipton SA (2015) Protein S-Nitrosylation as a therapeutic target for neurodegenerative diseases. Trend Pharmacol Sci 37:73–84CrossRefGoogle Scholar
  20. 20.
    Nakamura T, Prikhodko OA, Pirie E et al (2015) Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol Dis 84:99–108CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nakamura T, Tu S, Akhtar MW et al (2013) Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron 78:596–614CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271CrossRefPubMedGoogle Scholar
  23. 23.
    Holmgren A, Lu J (2010) Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 396:120–124CrossRefPubMedGoogle Scholar
  24. 24.
    Weichsel A, Brailey JL, Montfort WR (2007) Buried S-nitrosocysteine revealed in crystal structures of human thioredoxin. Biochemistry 46:1219–1227CrossRefPubMedGoogle Scholar
  25. 25.
    Weichsel A, Kem M, Montfort WR (2010) Crystal structure of human thioredoxin revealing an unraveled helix and exposed S-nitrosation site. Protein Sci 19:1801–1806CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Barglow KT, Knutson CG, Wishnok JS et al (2011) Site-specific and redox-controlled S-nitrosation of thioredoxin. Proc Natl Acad Sci U S A 108:600–606CrossRefGoogle Scholar
  27. 27.
    Wu C, Liu T, Chen W et al (2010) Redox regulatory mechanism of transnitrosylation by thioredoxin. Mol Cell Proteomics 9:2262–2275CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Haendeler J, Hoffmann J, Tischler V et al (2002) Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 4:743–749CrossRefPubMedGoogle Scholar
  29. 29.
    Mitchell DA, Marletta MA (2005) Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol 1:154–158CrossRefPubMedGoogle Scholar
  30. 30.
    Mitchell DA, Morton SU, Fernhoff NB, Marletta MA (2007) Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci U S A 104:11609–11614CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Saitoh M, Nishitoh H, Fujii M et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sumbayev VV (2003) S-nitrosylation of thioredoxin mediates activation of apoptosis signal-regulating kinase 1. Arch Biochem Biophys 415:133–137CrossRefPubMedGoogle Scholar
  33. 33.
    Yasinska IM, Kozhukhar AV, Sumbayev VV (2004) S-nitrosation of thioredoxin in the nitrogen monoxide/superoxide system activates apoptosis signal-regulating kinase 1. Arch Biochem Biophys 428:198–203CrossRefPubMedGoogle Scholar
  34. 34.
    Wu C, Parrott AM, Liu T et al (2013) Functional proteomics approaches for the identification of transnitrosylase and denitrosylase targets. Methods 62:151–160CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wu C, Parrott AM, Liu T et al (2011) Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach. J Proteomics 74:2498–2509CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Stoyanovsky DA, Tyurina YY, Tyurin VA et al (2005) Thioredoxin and lipoic acid catalyze the denitrosation of low molecular weight and protein S-nitrosothiols. J Am Chem Soc 127:15815–15823CrossRefPubMedGoogle Scholar
  37. 37.
    Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320:1050–1054CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sengupta R, Billiar TR, Kagan VE, Stoyanovsky DA (2009) Nitric oxide and thioredoxin type 1 modulate the activity of caspase 8 in HepG2 cells. Biochem Biophys Res Commun 391:1127–1130CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Benhar M, Thompson JW, Moseley MA, Stamler JS (2010) Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approach. Biochemistry 49:6963–6969CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hara MR, Agrawal N, Kim SF et al (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674CrossRefPubMedGoogle Scholar
  41. 41.
    Chakravarti R, Stuehr DJ (2012) Thioredoxin-1 regulates cellular heme insertion by controlling S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 287:16179–16186CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Matsushima S, Zablocki D, Sadoshima J (2011) Application of recombinant thioredoxin1 for treatment of heart disease. J Mol Cell Cardiol 51:570–573CrossRefPubMedGoogle Scholar
  43. 43.
    Li H, Wan A, Xu G, Ye D (2013) Small changes huge impact: the role of thioredoxin 1 in the regulation of apoptosis by S-nitrosylation. Acta Biochim Biophys Sin Shanghai 45:153–161CrossRefPubMedGoogle Scholar
  44. 44.
    Ito T, Yamakuchi M, Lowenstein CJ (2011) Thioredoxin increases exocytosis by denitrosylating N-ethylmaleimide-sensitive factor. J Biol Chem 286:11179–11184CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kelleher ZT, Sha Y, Foster MW et al (2014) Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor kappaB (NF-kappaB) activation. J Biol Chem 289:3066–3072CrossRefPubMedGoogle Scholar
  46. 46.
    Edes K, Cassidy P, Shami PJ, Moos PJ (2010) JS-K, a nitric oxide prodrug, has enhanced cytotoxicity in colon cancer cells with knockdown of thioredoxin reductase 1. PLoS One 5:e8786CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Tao L, Gao E, Bryan NS et al (2004) Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation. Proc Natl Acad Sci U S A 101:11471–11476CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sun J, Nguyen T, Aponte AM et al (2015) Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovasc Res 106:227–236CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Cell Biology and Molecular Medicine, Cardiovascular Research InstituteRutgers New Jersey Medical SchoolNewarkUSA

Personalised recommendations