Advertisement

The Concept of Oxidative Stress After 30 Years

  • Helmut SiesEmail author
Chapter
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 16)

Abstract

Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control and/or molecular damage (Sies H, Jones DP, Oxidative stress. In: Fink G (eds) Encyclopedia of stress. 2nd edn, vol 3, Elsevier, Amsterdam, pp 45–48, 2007). The concept of oxidative stress, first formulated in 1985, is presented and discussed in the context of current developments. The role of hydrogen peroxide in oxidative stress and redox signaling has come into focus, with attempts to explore spatio-temporal control. Special aquaporins serve as peroxiporins. Research on molecular redox switches governing oxidative stress responses is in full bloom. On the more practical side, cautious use of terminology and methods regarding the so called ROS, reactive oxygen species, is recommended. The major role in antioxidant defense is fulfilled by antioxidant enzymes, not by small-molecule antioxidant compounds. The field of oxidative stress research embraces chemistry, biochemistry, cell biology, physiology and pathophysiology, all the way to health and disease research, ultimately providing a scientific basis for a modern redox medicine.

Keywords

Oxidative stress Redox homeostasis Stress responses Redox code Hydrogen peroxide Redox signalling Molecular redox switches Redox medicine 

Notes

Acknowledgements

I gratefully acknowledge the input and friendship of many colleagues in shaping ideas in this multidisciplinary field, gathered under the umbrella of the Society for Free Radical Research International (SFRRI) and related organisations such as the Oxygen Club of California (OCC).

I also am thankful for the research support by the National Foundation of Cancer Research (NFCR), Bethesda, MD, USA, and to the Deutsche Forschungsgemeinschaft and the Alexander-von-Humboldt Foundation, Bonn, Germany.

References

  1. 1.
    Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. Academic, London, pp 1–8CrossRefGoogle Scholar
  2. 2.
    Sies H (1986) Biochemistry of oxidative stress. Angew Chem Int Ed 25:1058–1071CrossRefGoogle Scholar
  3. 3.
    Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Herrmann JM, Becker K, Dick TP (2015) Highlight: dynamics of thiol-based redox switches. Biol Chem 396:385–387CrossRefPubMedGoogle Scholar
  5. 5.
    Riemer J, Schwarzländer M, Conrad M, Herrmann JM (2015) Thiol switches in mitochondria: operation and physiological relevance. Biol Chem 396:465–482CrossRefPubMedGoogle Scholar
  6. 6.
    Sies H, Jones DP (2007) Oxidative stress. In: Fink G (ed) Encyclopedia of stress, vol 3, 2nd edn. Elsevier, Amsterdam, pp 45–48CrossRefGoogle Scholar
  7. 7.
    Prigogine I (1978) Time, structure, and fluctuations. Science 201:777–785CrossRefPubMedGoogle Scholar
  8. 8.
    Jones DP, Sies H (2015) The redox code. Antioxid Redox Signal 23:734–746CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224C:164–175CrossRefGoogle Scholar
  10. 10.
    Breitenbach M, Eckl P (2015) Introduction to oxidative stress in biomedical and biological research. Biomolecules 5:1169–1177CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sies H, Chance B (1970) The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver. FEBS Lett 11:172–176CrossRefPubMedGoogle Scholar
  12. 12.
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605PubMedGoogle Scholar
  13. 13.
    Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yin F, Boveris A, Cadenas E (2014) Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal 20:353–371CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bleier L, Wittig I, Heide H et al (2015) Generator-specific targets of mitochondrial reactive oxygen species. Free Radic Biol Med 78:1–10CrossRefPubMedGoogle Scholar
  16. 16.
    Goncalves RL, Quinlan CL, Perevoshchikova IV et al (2015) Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem 290:209–227CrossRefPubMedGoogle Scholar
  17. 17.
    Quinlan CL, Goncalves RL, Hey-Mogensen M et al (2014) The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J Biol Chem 289:8312–8325CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mailloux RJ (2015) Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol 4:381–398CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Oshino N, Chance B, Sies H, Bücher T (1973) The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch Biochem Biophys 154:117–131CrossRefPubMedGoogle Scholar
  20. 20.
    Sies H (2014) Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem 289:8735–8741CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rhee SG, Woo HA (2011) Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2 and protein chaperones. Antioxid Redox Signal 15:781–794CrossRefPubMedGoogle Scholar
  23. 23.
    Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51:2053–2066CrossRefPubMedGoogle Scholar
  24. 24.
    Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758:994–1003CrossRefPubMedGoogle Scholar
  25. 25.
    Bienert GP, Moller AL, Kristiansen KA et al (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192CrossRefPubMedGoogle Scholar
  26. 26.
    Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840:1596–1604CrossRefPubMedGoogle Scholar
  27. 27.
    Hara-Chikuma M, Satooka H, Watanabe S et al (2015) Aquaporin-3-mediated hydrogen peroxide transport is required for NF-kappaB signalling in keratinocytes and development of psoriasis. Nat Commun 6:7454CrossRefPubMedGoogle Scholar
  28. 28.
    Hara-Chikuma M, Watanabe S, Satooka H (2016) Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells. Biochem Biophys Res Commun 471(4):603–609. doi: 10.1016/j.bbrc.2016.02.010 CrossRefPubMedGoogle Scholar
  29. 29.
    Watanabe S, Moniaga CS, Nielsen S, Hara-Chikuma M (2016) Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem Biophys Res Commun 471(1):191–197, pii: MCB.00971-15Google Scholar
  30. 30.
    Selye H (1936) A syndrome produced by diverse nocious agents. Nature 138:32CrossRefGoogle Scholar
  31. 31.
    Selye H (1976) Forty years of stress research: principal remaining problems and misconceptions. Can Med Assoc J 115:53–56PubMedPubMedCentralGoogle Scholar
  32. 32.
    Go YM, Jones DP (2013) The redox proteome. J Biol Chem 288:26512–26520CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Flohé L (2016) The impact of thiol peroxidases on redox regulation. Free Radic Res 50:126–142CrossRefPubMedGoogle Scholar
  34. 34.
    D'Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824CrossRefPubMedGoogle Scholar
  35. 35.
    Christman MF, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753–762CrossRefPubMedGoogle Scholar
  36. 36.
    Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258PubMedPubMedCentralGoogle Scholar
  37. 37.
    Itoh K, Chiba T, Takahashi S et al (1997) A Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322CrossRefPubMedGoogle Scholar
  38. 38.
    Espinosa-Diez C, Miguel V et al (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 6:183–197CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kehrer JP, Klotz LO (2015) Free radicals and related reactive species as mediators of tissue injury and disease: implications for health. Crit Rev Toxicol 45:765–798CrossRefPubMedGoogle Scholar
  40. 40.
    Hohn A, König J, Grune T (2013) Protein oxidation in aging and the removal of oxidized proteins. J Proteomics 92:132–159CrossRefPubMedGoogle Scholar
  41. 41.
    Mouchiroud L, Houtkooper RH, Auwerx J (2013) NAD(+) metabolism: A therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Biol 48:397–408CrossRefPubMedGoogle Scholar
  42. 42.
    Chang CJ, Cravatt BF, Johnson DS et al (2014) Molecular medicine and neurodegenerative diseases. Chem Soc Rev 43:6668–6671CrossRefPubMedGoogle Scholar
  43. 43.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795CrossRefPubMedGoogle Scholar
  44. 44.
    Stocker R, Keaney JF Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478CrossRefPubMedGoogle Scholar
  45. 45.
    Cordeiro JV, Jacinto A (2013) The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat Rev Mol Cell Biol 14:249–262CrossRefGoogle Scholar
  46. 46.
    Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947CrossRefPubMedGoogle Scholar
  47. 47.
    Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat Rev Immunol 13:349–361CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Watson JD (2014) Type 2 diabetes as a redox disease. Lancet 383:841–843CrossRefPubMedGoogle Scholar
  49. 49.
    Casas AI, Dao VT, Daiber A et al (2015) Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications. Antioxid Redox Signal 23:1171–1185CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Frijhoff J, Winyard PG, Zarkovic N et al (2015) Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal 23:1144–1170CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Dao VT, Casas AI, Maghzal GJ et al (2015) Pharmacology and clinical drug candidates in redox medicine. Antioxid Redox Signal 23:1113–1129CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575CrossRefPubMedGoogle Scholar
  53. 53.
    Ceriello A, Ihnat M (2010) Oxidative stress is, convincingly, the mediator of the dangerous effects of glucose variability. Diabet Med 27:968CrossRefPubMedGoogle Scholar
  54. 54.
    Sies H, Stahl W, Sevanian A (2005) Nutritional, dietary and postprandial oxidative stress. J Nutr 135:969–972PubMedGoogle Scholar
  55. 55.
    Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Böck A, Flohé L, Köhrle J (2007) Selenoproteins - biochemistry and clinical relevance. Biol Chem 388:985–986CrossRefPubMedGoogle Scholar
  57. 57.
    Steinbrenner H, Al-Quraishy S, Dkhil MA et al (2015) Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr 6:73–82CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Steinbrenner H (2013) Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med 65:1538–1547CrossRefPubMedGoogle Scholar
  59. 59.
    Steinbrenner H, Sies H (2013) Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch Biochem Biophys 536:152–157CrossRefPubMedGoogle Scholar
  60. 60.
    Steinbrenner H, Speckmann B, Sies H (2013) Toward understanding success and failures in the use of selenium for cancer prevention. Antioxid Redox Signal 19:181–191CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Margaritelis NV, Cobley JN, Paschalis V et al (2016) Principles for integrating reactive species into in vivo biological processes: examples from exercise physiology. Cell Signal 28:256–271CrossRefPubMedGoogle Scholar
  62. 62.
    Forman HJ, Augusto O, Brigelius-Flohe R et al (2015) Even free radicals should follow some rules: a guide to free radical research terminology and methodology. Free Radic Biol Med 78:233–235CrossRefPubMedGoogle Scholar
  63. 63.
    Pompella A, Sies H, Wacker R et al (2014) The use of total antioxidant capacity as surrogate marker for food quality and its effect on health is to be discouraged. Nutrition 30:791–793CrossRefPubMedGoogle Scholar
  64. 64.
    Belousov VV, Fradkov AF, Lukyanov KA et al (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3:281–286CrossRefPubMedGoogle Scholar
  65. 65.
    Meyer AJ, Dick TP (2010) Fluorescent protein-based redox probes. Antioxid Redox Signal 13:621–650CrossRefPubMedGoogle Scholar
  66. 66.
    Zhang X, Gao F (2015) Imaging mitochondrial reactive oxygen species with fluorescent probes: current applications and challenges. Free Radic Res 49:374–382CrossRefPubMedGoogle Scholar
  67. 67.
    Ezerina D, Morgan B, Dick TP (2014) Imaging dynamic redox processes with genetically encoded probes. J Mol Cell Cardiol 73:43–49CrossRefPubMedGoogle Scholar
  68. 68.
    Kaludercic N, Deshwal S, Di Lisa F (2014) Reactive oxygen species and redox compartmentalization. Front Physiol 5:285CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Biochemistry and Molecular Biology IUniversity of DüsseldorfDüsseldorfGermany
  2. 2.Leibniz Research Institute of Environmental MedicineHeinrich-Heine-University DüsseldorfDüsseldorfGermany
  3. 3.College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations