Abstract
We consider the deployment of island-based memetic algorithms (MAs) endowed with \(\text {self-}{\star }\) properties on unstable computational environments composed of a collection of computing nodes whose availability fluctuates. In this context, these properties refer to the ability of the MA to work autonomously in order to optimize its performance and to react to the instability of computational resources. The main focus of this work is analyzing the performance of such MAs when the underlying computational substrate is not only volatile but also heterogeneous in terms of the computational power of each of its constituent nodes. We use for this purpose a simulated environment subject to different volatility rates, whose topology is modeled as scale-free networks and whose computing power is distributed among nodes following different distributions. We observe that in general computational homogeneity is preferable in scenarios with low instability; in case of high instability, MAs without self-scaling and self-healing perform better when the computational power follows a power law, but performance seems to be less sensitive to the distribution when these \(\text {self-}{\star }\) properties are used.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anderson, D.P., Reed, K.: Celebrating diversity in volunteer computing. In: Proceedings of the 42nd Hawaii International Conference on System Sciences HICSS 2009, pp. 1–8. IEEE Computer Society, Washington, DC (2009)
Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen, M.: Self-star Properties in Complex Information Systems. Lecture Notes in Computer Science, vol. 3460. Springer, Heidelberg (2005)
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Berns, A., Ghosh, S.: Dissecting self-\(\star \) properties. In: Third IEEE International Conference on Self-Adaptive and Self-Organizing Systems - SASO 2009, pp. 10–19. IEEE Press, San Francisco, CA (2009)
Caraffini, F., Neri, F., Picinali, L.: An analysis on separability for memetic computing automatic design. Inf. Sci. 265, 1–22 (2014)
Cotta, C., Fernández-Leiva, A., de Vega, F.F., Chávez, F., Merelo, J., Castillo, P., Bello, G., Camacho, D.: Ephemeral computing and bioinspired optimization - challenges and opportunities. In: 7th International Joint Conference on Evolutionary Computation Theory and Applications, pp. 319–324, Lisboa, Portugal (2015)
Deb, K., Goldberg, D.: Analyzing deception in trap functions. In: Whitley, L. (ed.) Second Workshop on Foundations of Genetic Algorithms, pp. 93–108. Morgan Kaufmann Publishers, Vail (1993)
Eiben, A.E.: Evolutionary computing and autonomic computing: shared problems, shared solutions? In: Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp. 36–48. Springer, Heidelberg (2005)
Fernández, F., Vanneschi, L., Tomassini, M.: The effect of plagues in genetic programming: a study of variable-size populations. In: Ryan, C., et al. (eds.) Genetic Programming. LNCS, vol. 2610, pp. 317–326. Springer, Heidelberg (2003)
Goldberg, D., Deb, K., Horn, J.: Massive multimodality, deception and genetic algorithms. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving from Nature - PPSN II, pp. 37–48. Elsevier Science Inc., New York (1992)
Hinterding, R., Michalewicz, Z., Eiben, A.: Adaptation in evolutionary computation: a survey. In: Fourth IEEE Conference on Evolutionary Computation, pp. 65–69. IEEE Press, Piscataway, New Jersey (1997)
Krasnogor, N., Gustafson, S.: A study on the use of “self-generation” in memetic algorithms. Nat. Comput. 3(1), 53–76 (2004)
Laredo, J., Castillo, P., Mora, A., Merelo, J., Fernandes, C.: Resilience to churn of a peer-to-peer evolutionary algorithm. Int. J. High Perform. Syst. Archit. 1(4), 260–268 (2008)
Liu, C., White, R., Dumais, S.: Understanding web browsing behaviors through Weibull analysis of dwell time. In: 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2010, pp. 379–386. ACM, New York (2010)
Lombraña González, D., Jiménez Laredo, J., de Vega, F.F., Guervós, J.M.: Characterizing fault-tolerance in evolutionary algorithms. In: de Vega, F.F., et al. (eds.) Parallel Architectures and Bioinspired Algorithms. SCI, vol. 415, pp. 77–99. Springer, Heidelberg (2012)
Michalewicz, Z.: Repair algorithms. In: Bäck, T., et al. (eds.) Handbook of Evolutionary Computation, pp. C5.4:1–5. Institute of Physics Publishing and Oxford University Press, Bristol (1997)
Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a literature review. Swarm Evolut. Comput. 2, 1–14 (2012)
Nogueras, R., Cotta, C.: An analysis of migration strategies in island-based multimemetic algorithms. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 731–740. Springer, Heidelberg (2014)
Nogueras, R., Cotta, C.: Self-balancing multimemetic algorithms in dynamic scale-free networks. In: Mora, A., Squillero, G. (eds.) Applications of Evolutionary Computing. LNCS, vol. 9028, pp. 177–188. Springer, Heidelberg (2015)
Nogueras, R., Cotta, C.: Self-sampling strategies for multimemetic algorithms in unstable computational environments. In: Vicente, J.M.F., Álvarez-Sánchez, J.R., López, F.P., Toledo-Moreo, F.J., Adeli, H. (eds.) Bioinspired Computation in Artificial Systems. LNCS, vol. 9108, pp. 69–78. Springer, Heidelberg (2015)
Nogueras, R., Cotta, C.: Self-healing strategies for memetic algorithms in unstable and ephemeral computational environments. Nat. Comput. (2016, in press)
Nogueras, R., Cotta, C.: Studying self-balancing strategies in island-based multimemetic algorithms. J. Comput. Appl. Math. 293, 180–191 (2016)
Ong, Y., Lim, M., Chen, X.: Memetic computation -past, present and future. IEEE Comput. Intell. Mag. 5(2), 24–31 (2010)
Smith, J.E.: Self-adaptation in evolutionary algorithms for combinatorial optimisation. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics. SCI, vol. 136, pp. 31–57. Springer, Heidelberg (2008)
Smith, J.: Self-adaptative and coevolving memetic algorithms. In: Neri, F. (ed.) Handbook of Memetic Algorithms. SCI, vol. 379, pp. 167–188. Springer, Heidelberg (2012)
Watson, R.A., Hornby, G.S., Pollack, J.B.: Modeling building-block interdependency. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 97–106. Springer, Heidelberg (1998)
Zambonelli, F.: Exploiting biased load information in direct-neighbour load balancing policies. Parallel Comput. 25(6), 745–766 (1999)
Zhao, W., Schulzrinne, H.: DotSlash: a self-configuring and scalable rescue system for handling web hotspots effectively. In: Chi, C.-H., van Steen, M., Wills, C. (eds.) WCW 2004. LNCS, vol. 3293, pp. 1–18. Springer, Heidelberg (2004)
Acknowledgements
We acknowledge support from Spanish MinEco and FEDER under project EphemeCH (TIN2014-56494-C4-1-P), from Junta de Andalucía under project DNEMESIS (P10-TIC-6083), and from Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Nogueras, R., Cotta, C. (2016). A Study of the Performance of \(\text {Self-}{\star }\) Memetic Algorithms on Heterogeneous Ephemeral Environments. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-45823-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45822-9
Online ISBN: 978-3-319-45823-6
eBook Packages: Computer ScienceComputer Science (R0)