Skip to main content

A Study of the Performance of \(\text {Self-}{\star }\) Memetic Algorithms on Heterogeneous Ephemeral Environments

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XIV (PPSN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9921))

Included in the following conference series:

Abstract

We consider the deployment of island-based memetic algorithms (MAs) endowed with \(\text {self-}{\star }\) properties on unstable computational environments composed of a collection of computing nodes whose availability fluctuates. In this context, these properties refer to the ability of the MA to work autonomously in order to optimize its performance and to react to the instability of computational resources. The main focus of this work is analyzing the performance of such MAs when the underlying computational substrate is not only volatile but also heterogeneous in terms of the computational power of each of its constituent nodes. We use for this purpose a simulated environment subject to different volatility rates, whose topology is modeled as scale-free networks and whose computing power is distributed among nodes following different distributions. We observe that in general computational homogeneity is preferable in scenarios with low instability; in case of high instability, MAs without self-scaling and self-healing perform better when the computational power follows a power law, but performance seems to be less sensitive to the distribution when these \(\text {self-}{\star }\) properties are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, D.P., Reed, K.: Celebrating diversity in volunteer computing. In: Proceedings of the 42nd Hawaii International Conference on System Sciences HICSS 2009, pp. 1–8. IEEE Computer Society, Washington, DC (2009)

    Google Scholar 

  2. Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen, M.: Self-star Properties in Complex Information Systems. Lecture Notes in Computer Science, vol. 3460. Springer, Heidelberg (2005)

    Book  Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berns, A., Ghosh, S.: Dissecting self-\(\star \) properties. In: Third IEEE International Conference on Self-Adaptive and Self-Organizing Systems - SASO 2009, pp. 10–19. IEEE Press, San Francisco, CA (2009)

    Google Scholar 

  5. Caraffini, F., Neri, F., Picinali, L.: An analysis on separability for memetic computing automatic design. Inf. Sci. 265, 1–22 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cotta, C., Fernández-Leiva, A., de Vega, F.F., Chávez, F., Merelo, J., Castillo, P., Bello, G., Camacho, D.: Ephemeral computing and bioinspired optimization - challenges and opportunities. In: 7th International Joint Conference on Evolutionary Computation Theory and Applications, pp. 319–324, Lisboa, Portugal (2015)

    Google Scholar 

  7. Deb, K., Goldberg, D.: Analyzing deception in trap functions. In: Whitley, L. (ed.) Second Workshop on Foundations of Genetic Algorithms, pp. 93–108. Morgan Kaufmann Publishers, Vail (1993)

    Google Scholar 

  8. Eiben, A.E.: Evolutionary computing and autonomic computing: shared problems, shared solutions? In: Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp. 36–48. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Fernández, F., Vanneschi, L., Tomassini, M.: The effect of plagues in genetic programming: a study of variable-size populations. In: Ryan, C., et al. (eds.) Genetic Programming. LNCS, vol. 2610, pp. 317–326. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Goldberg, D., Deb, K., Horn, J.: Massive multimodality, deception and genetic algorithms. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving from Nature - PPSN II, pp. 37–48. Elsevier Science Inc., New York (1992)

    Google Scholar 

  11. Hinterding, R., Michalewicz, Z., Eiben, A.: Adaptation in evolutionary computation: a survey. In: Fourth IEEE Conference on Evolutionary Computation, pp. 65–69. IEEE Press, Piscataway, New Jersey (1997)

    Google Scholar 

  12. Krasnogor, N., Gustafson, S.: A study on the use of “self-generation” in memetic algorithms. Nat. Comput. 3(1), 53–76 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Laredo, J., Castillo, P., Mora, A., Merelo, J., Fernandes, C.: Resilience to churn of a peer-to-peer evolutionary algorithm. Int. J. High Perform. Syst. Archit. 1(4), 260–268 (2008)

    Article  Google Scholar 

  14. Liu, C., White, R., Dumais, S.: Understanding web browsing behaviors through Weibull analysis of dwell time. In: 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2010, pp. 379–386. ACM, New York (2010)

    Google Scholar 

  15. Lombraña González, D., Jiménez Laredo, J., de Vega, F.F., Guervós, J.M.: Characterizing fault-tolerance in evolutionary algorithms. In: de Vega, F.F., et al. (eds.) Parallel Architectures and Bioinspired Algorithms. SCI, vol. 415, pp. 77–99. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Michalewicz, Z.: Repair algorithms. In: Bäck, T., et al. (eds.) Handbook of Evolutionary Computation, pp. C5.4:1–5. Institute of Physics Publishing and Oxford University Press, Bristol (1997)

    Google Scholar 

  17. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a literature review. Swarm Evolut. Comput. 2, 1–14 (2012)

    Article  Google Scholar 

  18. Nogueras, R., Cotta, C.: An analysis of migration strategies in island-based multimemetic algorithms. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 731–740. Springer, Heidelberg (2014)

    Google Scholar 

  19. Nogueras, R., Cotta, C.: Self-balancing multimemetic algorithms in dynamic scale-free networks. In: Mora, A., Squillero, G. (eds.) Applications of Evolutionary Computing. LNCS, vol. 9028, pp. 177–188. Springer, Heidelberg (2015)

    Google Scholar 

  20. Nogueras, R., Cotta, C.: Self-sampling strategies for multimemetic algorithms in unstable computational environments. In: Vicente, J.M.F., Álvarez-Sánchez, J.R., López, F.P., Toledo-Moreo, F.J., Adeli, H. (eds.) Bioinspired Computation in Artificial Systems. LNCS, vol. 9108, pp. 69–78. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  21. Nogueras, R., Cotta, C.: Self-healing strategies for memetic algorithms in unstable and ephemeral computational environments. Nat. Comput. (2016, in press)

    Google Scholar 

  22. Nogueras, R., Cotta, C.: Studying self-balancing strategies in island-based multimemetic algorithms. J. Comput. Appl. Math. 293, 180–191 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ong, Y., Lim, M., Chen, X.: Memetic computation -past, present and future. IEEE Comput. Intell. Mag. 5(2), 24–31 (2010)

    Article  Google Scholar 

  24. Smith, J.E.: Self-adaptation in evolutionary algorithms for combinatorial optimisation. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics. SCI, vol. 136, pp. 31–57. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Smith, J.: Self-adaptative and coevolving memetic algorithms. In: Neri, F. (ed.) Handbook of Memetic Algorithms. SCI, vol. 379, pp. 167–188. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Watson, R.A., Hornby, G.S., Pollack, J.B.: Modeling building-block interdependency. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 97–106. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  27. Zambonelli, F.: Exploiting biased load information in direct-neighbour load balancing policies. Parallel Comput. 25(6), 745–766 (1999)

    Article  MATH  Google Scholar 

  28. Zhao, W., Schulzrinne, H.: DotSlash: a self-configuring and scalable rescue system for handling web hotspots effectively. In: Chi, C.-H., van Steen, M., Wills, C. (eds.) WCW 2004. LNCS, vol. 3293, pp. 1–18. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Spanish MinEco and FEDER under project EphemeCH (TIN2014-56494-C4-1-P), from Junta de Andalucía under project DNEMESIS (P10-TIC-6083), and from Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Nogueras, R., Cotta, C. (2016). A Study of the Performance of \(\text {Self-}{\star }\) Memetic Algorithms on Heterogeneous Ephemeral Environments. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics