Skip to main content

Towards Analyzing Multimodality of Continuous Multiobjective Landscapes

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9921)

Abstract

This paper formally defines multimodality in multiobjective optimization (MO). We introduce a test-bed in which multimodal MO problems with known properties can be constructed as well as numerical characteristics of the resulting landscape. Gradient- and local search based strategies are compared on exemplary problems together with specific performance indicators in the multimodal MO setting. By this means the foundation for Exploratory Landscape Analysis in MO is provided.

Keywords

  • Multiobjective optimization
  • Multimodality
  • Landscape analysis
  • Hypervolume gradient ascent
  • Set based optimization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-45823-6_90
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-45823-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. 1.

    The HIGA-MO source code is available on moda.liacs.nl/index.php?page=code.

References

  1. Bischl, B., Mersmann, O., Trautmann, H., Preuss, M.: Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO 2012, New York, NY, USA, pp. 313–320. ACM (2012)

    Google Scholar 

  2. Emmerich, M., Deutz, A.: Time complexity and zeros of the hypervolume indicator gradient field. In: Schuetze, O., Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Moral, P.D., Legrand, P. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III. SCI, vol. 500, pp. 169–193. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  3. Emmerich, M.T.M., Deutz, A.H., Beume, N.: Gradient-based/evolutionary relay hybrid for computing pareto front approximations maximizing the s-metric. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HCI/ICCV 2007. LNCS, vol. 4771, pp. 140–156. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  4. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel structures by means of exploratory landscape analysis. In: Proceedings of the 17th Annual Conference on Genetic and Evolutionary Computation, pp. 265–272. ACM (2015)

    Google Scholar 

  5. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Low-budget exploratory landscape analysis on multiple peaks models. In: Proceedings of the 18th Annual Conference on Genetic and Evolutionary Computation. ACM (2016, accepted)

    Google Scholar 

  6. Liefooghe, A., Verel, S., Daolio, F., Aguirre, H., Tanaka, K.: A feature-based performance analysis in evolutionary multiobjective optimization. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 95–109. Springer, Heidelberg (2015)

    Google Scholar 

  7. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, New York, NY, USA, pp. 829–836. ACM (2011)

    Google Scholar 

  8. Rudolph, G., Naujoks, B., Preuss, M.: Capabilities of EMOA to detect and preserve equivalent pareto subsets. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 36–50. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  9. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives. Eur. J. Oper. Res. 227(2), 331–342 (2013)

    MathSciNet  CrossRef  Google Scholar 

  10. Wessing, S.: Two-stage methods for multimodal optimization. Ph.D. thesis, Technische Universität Dortmund (2015). http://hdl.handle.net/2003/34148

Download references

Acknowledgments

Heike Trautmann, Pascal Kerschke, Mike Preuss and Christian Grimme acknowledge support by the European Research Center for Information Systems (ERCIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Kerschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kerschke, P. et al. (2016). Towards Analyzing Multimodality of Continuous Multiobjective Landscapes. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_90

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_90

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)