Skip to main content

Towards Analyzing Multimodality of Continuous Multiobjective Landscapes

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XIV (PPSN 2016)

Abstract

This paper formally defines multimodality in multiobjective optimization (MO). We introduce a test-bed in which multimodal MO problems with known properties can be constructed as well as numerical characteristics of the resulting landscape. Gradient- and local search based strategies are compared on exemplary problems together with specific performance indicators in the multimodal MO setting. By this means the foundation for Exploratory Landscape Analysis in MO is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The HIGA-MO source code is available on moda.liacs.nl/index.php?page=code.

References

  1. Bischl, B., Mersmann, O., Trautmann, H., Preuss, M.: Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO 2012, New York, NY, USA, pp. 313–320. ACM (2012)

    Google Scholar 

  2. Emmerich, M., Deutz, A.: Time complexity and zeros of the hypervolume indicator gradient field. In: Schuetze, O., Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Moral, P.D., Legrand, P. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III. SCI, vol. 500, pp. 169–193. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. Emmerich, M.T.M., Deutz, A.H., Beume, N.: Gradient-based/evolutionary relay hybrid for computing pareto front approximations maximizing the s-metric. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HCI/ICCV 2007. LNCS, vol. 4771, pp. 140–156. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel structures by means of exploratory landscape analysis. In: Proceedings of the 17th Annual Conference on Genetic and Evolutionary Computation, pp. 265–272. ACM (2015)

    Google Scholar 

  5. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Low-budget exploratory landscape analysis on multiple peaks models. In: Proceedings of the 18th Annual Conference on Genetic and Evolutionary Computation. ACM (2016, accepted)

    Google Scholar 

  6. Liefooghe, A., Verel, S., Daolio, F., Aguirre, H., Tanaka, K.: A feature-based performance analysis in evolutionary multiobjective optimization. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 95–109. Springer, Heidelberg (2015)

    Google Scholar 

  7. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, New York, NY, USA, pp. 829–836. ACM (2011)

    Google Scholar 

  8. Rudolph, G., Naujoks, B., Preuss, M.: Capabilities of EMOA to detect and preserve equivalent pareto subsets. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 36–50. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives. Eur. J. Oper. Res. 227(2), 331–342 (2013)

    Article  MathSciNet  Google Scholar 

  10. Wessing, S.: Two-stage methods for multimodal optimization. Ph.D. thesis, Technische Universität Dortmund (2015). http://hdl.handle.net/2003/34148

Download references

Acknowledgments

Heike Trautmann, Pascal Kerschke, Mike Preuss and Christian Grimme acknowledge support by the European Research Center for Information Systems (ERCIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Kerschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kerschke, P. et al. (2016). Towards Analyzing Multimodality of Continuous Multiobjective Landscapes. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_90

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_90

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics