Advertisement

Evolving Spatially Aggregated Features from Satellite Imagery for Regional Modeling

  • Sam Kriegman
  • Marcin Szubert
  • Josh C. Bongard
  • Christian Skalka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9921)

Abstract

Satellite imagery and remote sensing provide explanatory variables at relatively high resolutions for modeling geospatial phenomena, yet regional summaries are often desirable for analysis and actionable insight. In this paper, we propose a novel method of inducing spatial aggregations as a component of the machine learning process, yielding regional model features whose construction is driven by model prediction performance rather than prior assumptions. Our results demonstrate that Genetic Programming is particularly well suited to this type of feature construction because it can automatically synthesize appropriate aggregations, as well as better incorporate them into predictive models compared to other regression methods we tested. In our experiments we consider a specific problem instance and real-world dataset relevant to predicting snow properties in high-mountain Asia.

Keywords

Spatial aggregation Feature construction Genetic programming Symbolic regression 

Notes

Acknowledgements

Thanks to Dr. Jeff Dozier (UCSB) for posing the high-mountain Asia SWE problem and providing associated datasets.

References

  1. 1.
    Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical systems. Proc. Nat. Acad. Sci. 104(24), 9943–9948 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Buckingham, D., Skalka, C., Bongard, J.: Inductive learning of snowpack distribution models for improved estimation of areal snow water equivalent. J. Hydrol. 524, 311–325 (2015)CrossRefGoogle Scholar
  3. 3.
    Dong, J., Walker, J.P., Houser, P.R.: Factors affecting remotely sensed snow water equivalent uncertainty. Remote Sens. Environ. 97(1), 68–82 (2005)CrossRefGoogle Scholar
  4. 4.
    Dozier, J., Painter, T.H., Rittger, K., Frew, J.: Time-space continuity of daily maps of fractional snow cover and albedo from MODIS. Adv. Water Resour. 31(11), 1515–1526 (2008)CrossRefGoogle Scholar
  5. 5.
    Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods. Wiley, Hoboken (2013)zbMATHGoogle Scholar
  7. 7.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  8. 8.
    Krawiec, K.: Genetic programming-based construction of features for machine learning and knowledge discovery tasks. Genet. Program Evolvable Mach. 3(4), 329–343 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Martinec, J., Rango, A.: Areal distribution of snow water equivalent evaluated by snow cover monitoring. Water Resour. Res 17(5), 1480–1488 (1981)CrossRefGoogle Scholar
  10. 10.
    Painter, T.H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R.E., Dozier, J.: Retrieval of subpixel snow-covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 113, 868–879 (2009)CrossRefGoogle Scholar
  11. 11.
    Rees, J., Gibson, A., Harrison, M., Hughes, A., Walsby, J.: Regional modelling of geohazard change. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 22(1), 49–63 (2009)Google Scholar
  12. 12.
    Schmidt, M., Lipson, H.: Age-fitness pareto optimization. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII. Genetic and Evolutionary Computation, vol. 8, pp. 129–146. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Schmidt, M.D., Vallabhajosyula, R.R., Jenkins, J.W., Hood, J.E., Soni, A.S., Wikswo, J.P., Lipson, H.: Automated refinement and inference of analytical models for metabolic networks. Phys. Biol. 8(5), 055011 (2011)CrossRefGoogle Scholar
  14. 14.
    Stanislawska, K., Krawiec, K., Vihma, T.: Genetic programming for estimation of heat flux between the atmosphere and sea ice in polar regions. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, pp. 1279–1286. ACM (2015)Google Scholar
  15. 15.
    Tedesco, M., Narvekar, P.S.: Assessment of the NASA AMSR-E SWE product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3(1), 141–159 (2010)CrossRefGoogle Scholar
  16. 16.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Tobler, W.R.: A computer movie simulating urban growth in the detroit region. Econ. Geogr. 46, 234–240 (1970)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Sam Kriegman
    • 1
  • Marcin Szubert
    • 1
  • Josh C. Bongard
    • 1
  • Christian Skalka
    • 1
  1. 1.University of VermontBurlingtonUSA

Personalised recommendations