Advertisement

Fast and Effective Multi-objective Optimisation of Submerged Wave Energy Converters

  • Dídac Rodríguez Arbonès
  • Boyin Ding
  • Nataliia Y. Sergiienko
  • Markus WagnerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9921)

Abstract

Despite its considerable potential, wave energy has not yet reached full commercial development. Currently, dozens of wave energy projects are exploring a variety of techniques to produce wave energy efficiently. A common design for a wave energy converter is called a buoy. A buoy typically floats on the surface or just below the surface of the water, and captures energy from the movement of the waves.

In this article, we tackle the multi-objective variant of this problem: we are taking into account the highly complex interactions of the buoys, while optimising the energy yield, the necessary area, and the cable length needed to connect all buoys. We employ caching-techniques and problem-specific variation operators to make this problem computationally feasible. This is the first time the interactions between wave energy resource and array configuration are studied in a multi-objective way.

Keywords

Wave energy Multi-objective optimisation Simulation speed-up 

Notes

Acknowledgments

This work has been supported by the ARC Discovery Early Career Researcher Award DE160100850.

References

  1. 1.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    de Andrés, A., Guanche, R., Meneses, L., Vidal, C., Losada, I.: Factors that influence array layout on wave energy farms. Ocean Eng. 82, 32–41 (2014)CrossRefGoogle Scholar
  3. 3.
    Drew, B., Plummer, A., Sahinkaya, M.N.: A review of wave energy converter technology. Proc. Inst. Mech. Eng. Part A: J. Power Energ. 223(8), 887–902 (2009)CrossRefGoogle Scholar
  4. 4.
    Falnes, J.: Ocean Waves, Oscillating Systems: Linear Interactions Including Wave-Energy Extraction. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  5. 5.
    GNU Scientific Library: Version 1.16 (2013). http://www.gnu.org/software/gsl/. Accessed 7 Apr 2016
  6. 6.
    Hansen, N.: CMA-ES Source Code: Practical Hints. https://www.lri.fr/~hansen/cmaes_inmatlab.html. Accessed 7 Apr 2016
  7. 7.
    Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)CrossRefGoogle Scholar
  8. 8.
    Igel, C., Heidrich-Meisner, V., Glasmachers, T.: Shark. J. Mach. Learn. Res. 9, 993–996 (2008)zbMATHGoogle Scholar
  9. 9.
    Lagoun, M., Benalia, A., Benbouzid, M.: Ocean wave converters: state of the art and current status. In: IEEE International Energy Conference, pp. 636–641 (2010)Google Scholar
  10. 10.
    López, I., Andreu, J., Ceballos, S., de Alegría, I.M., Kortabarria, I.: Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energ. Rev. 27, 413–434 (2013)CrossRefGoogle Scholar
  11. 11.
    Lynn, P.A.: Electricity from Wave and Tide: An Introduction to Marine Energy. Wiley, Hoboken (2013)CrossRefGoogle Scholar
  12. 12.
    MATLAB: Version 8.6.0 (R2015b). The MathWorks Inc., Natick (2015)Google Scholar
  13. 13.
    OpenMP Architecture Review Board: OpenMP Application Program Interface, Version 3.0, May 2008Google Scholar
  14. 14.
    Scruggs, J.T., Lattanzio, S.M., Taflanidis, A.A., Cassidy, I.L.: Optimal causal control of a wave energy converter in a random sea. Appl. Ocean Res. 42(2013), 1–15 (2013)CrossRefGoogle Scholar
  15. 15.
    Sergiienko, N.Y., Cazzolato, B.S., Ding, B., Arjomandi, M.: Frequency Domain Model of the Three-Tether WECs Array (2016). https://www.researchgate.net/publication/291972368_Frequency_domain_model_of_the_three-tether_WECs_array. Accessed 7 Apr 2016
  16. 16.
    Srokosz, M.A.: The submerged sphere as an absorber of wave power. Fluid Mech. 95(4), 717–741 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tran, R., Wu, J., Denison, C., Ackling, T., Wagner, M., Neumann, F.: Fast and effective multi-objective optimisation of wind turbine placement. In: Genetic and Evolutionary Computation, pp. 1381–1388. ACM (2013)Google Scholar
  18. 18.
    Wu, J., Shekh, S., Sergiienko, N., Cazzolato, B., Ding, B., Neumann, F., Wagner, M.: Fast and effective optimisation of arrays of submerged wave energy converters. In: Genetic and Evolutionary Computation Conference (2016). Accepted for publicationGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Dídac Rodríguez Arbonès
    • 1
  • Boyin Ding
    • 2
  • Nataliia Y. Sergiienko
    • 2
  • Markus Wagner
    • 3
    Email author
  1. 1.Datalogisk InstitutUniversity of CopenhagenCopenhagenDenmark
  2. 2.School of Mechanical EngineeringThe University of AdelaideAdelaideAustralia
  3. 3.School of Computer ScienceThe University of AdelaideAdelaideAustralia

Personalised recommendations