Genotype Regulation by Self-modifying Instruction-Based Development on Cellular Automata

  • Stefano Nichele
  • Tom Eivind Glover
  • Gunnar Tufte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9921)


A novel method for regulation of gene expression for artificial cellular systems is introduced. It is based on an instructon-based representation which allows self-modification of genotype programs, as to be able to control the expression of different genes at different stages of development, e.g., environmental adaptation. Coding and non-coding genome analogies can be drawn in our cellular system, where coding genes are in the form of developmental actions while non-coding genes are represented as modifying instructions that can change other genes. This technique was tested successfully on the morphogenesis of cellular structures from a seed, self-replication of structures, growth and replication combined, as well as reuse of an evolved genotype for development or replication of different structures than initially targeted by evolution.


  1. 1.
    Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, Boca Raton (2006)MATHGoogle Scholar
  2. 2.
    Altenberg, L., et al.: The evolution of evolvability in genetic programming. In: Advances in Genetic Programming, pp. 47–74 (1994)Google Scholar
  3. 3.
    Bidlo, M., Škarvada, J.: Instruction-based development: from evolution to generic structures of digital circuits. Int. J. Knowl.-Based Intell. Eng. Syst. 12(3), 221–236 (2008)CrossRefGoogle Scholar
  4. 4.
    Bidlo, M., Vasicek, Z.: Evolution of cellular automata using instruction-based approach. In: Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)Google Scholar
  5. 5.
    Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. Proc. Royal Soc. Lond. B: Biol. Sci. 280(1755), 20122863 (2013)CrossRefGoogle Scholar
  6. 6.
    Glover, T.: An investigation into cellular automata: the self-modifying instruction-based approach. Master thesis (2015)Google Scholar
  7. 7.
    Harding, S.L., Miller, J.F., Banzhaf, W.: Self-modifying cartesian genetic programming. In: Miller, J.F. (ed.) Cartesian Genetic Programming, pp. 101–124. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Kampis, G.: Self-modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information and Complexity, vol. 6. Elsevier, Amsterdam (2013)Google Scholar
  9. 9.
    Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. Proc. Nati. Acad. Sci. U. S. A. 102(39), 13773–13778 (2005)CrossRefGoogle Scholar
  10. 10.
    Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Syst. J. 4, 461–476 (1990)MATHGoogle Scholar
  11. 11.
    Kitano, H.: Building complex systems using developmental process: an engineering approach. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 218–229. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Kovitz, B.: Experiments with cascading design. In: Proceedings of the 13th European Conference on Artificial Life (ECAL 2015), Workshop EvoEvo (2015)Google Scholar
  13. 13.
    Kowaliw, T., Banzhaf, W.: Augmenting artificial development with local fitness. In: Congress on Evolutionary Computation, pp. 316–323. IEEE (2009)Google Scholar
  14. 14.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)MATHGoogle Scholar
  15. 15.
    Kumar, S., Bentley, P.J.: Biologically inspired evolutionary development. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 57–68. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Martin, A.P.: Increasing genomic complexity by gene duplication and the origin of vertebrates. Am. Nat. 154(2), 111–128 (1999)CrossRefGoogle Scholar
  17. 17.
    Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, Oxford (2009)MATHGoogle Scholar
  19. 19.
    Nichele, S., Giskeødegård, A., Tufte, G.: Evolutionary growth of genome representations on artificial cellular organisms with indirect encodings. Artif. Life 22(1), 76–111 (2016)CrossRefGoogle Scholar
  20. 20.
    Nichele, S., Tufte, G.: Trajectories and attractors as specification for the evolution of behaviour in cellular automata. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)Google Scholar
  21. 21.
    Nichele, S., Tufte, G.: Evolutionary growth of genomes for the development and replication of multicellular organisms with indirect encoding. In: 2014 IEEE International Conference on Evolvable Systems (ICES), pp. 141–148. IEEE (2014)Google Scholar
  22. 22.
    Sipper, M.: Evolution of Parallel Cellular Machines. Springer, Heidelberg (1997)CrossRefMATHGoogle Scholar
  23. 23.
    Stanley, K.O., Miikkulainen, R.: Achieving high-level functionality through complexification. In: Proceedings of the AAAI-2003 Spring Symposium on Computational Synthesis, pp. 226–232 (2003)Google Scholar
  24. 24.
    Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complexification. J. Artif. Intell. Res. (JAIR) 21, 63–100 (2004)Google Scholar
  25. 25.
    Taylor, J.S., Raes, J.: Duplication and divergence: the evolution of new genes and old ideas. Annu. Rev. Genet. 38, 615–643 (2004)CrossRefGoogle Scholar
  26. 26.
    Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: On the advantages of variable length grns for the evolution of multicellular developmental systems. IEEE Trans. Evol. Comput. 17(1), 100–121 (2013)CrossRefGoogle Scholar
  27. 27.
    Von Neumann, J., Burks, A.W., et al.: Theory of self-reproducing automata. IEEE Trans. Neural Netw. 5(1), 3–14 (1966)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Stefano Nichele
    • 1
  • Tom Eivind Glover
    • 1
  • Gunnar Tufte
    • 1
  1. 1.Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations