Skip to main content

Feature Based Algorithm Configuration: A Case Study with Differential Evolution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9921))

Abstract

Algorithm Configuration is still an intricate problem especially in the continuous black box optimization domain. This paper empirically investigates the relationship between continuous problem features (measuring different problem characteristics) and the best parameter configuration of a given stochastic algorithm over a bench of test functions — namely here, the original version of Differential Evolution over the BBOB test bench. This is achieved by learning an empirical performance model from the problem features and the algorithm parameters. This performance model can then be used to compute an empirical optimal parameter configuration from features values. The results show that reasonable performance models can indeed be learned, resulting in a better parameter configuration than a static parameter setting optimized for robustness over the test bench.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The same \(\theta _j\) need not have been tried for all \(f_i\).

  2. 2.

    d, the dimension of the search space, can be considered as the only external feature — or the Algorithm Configuration can be conducted anew for each dimension (more in Sect. 5).

  3. 3.

    http://www1.icsi.berkeley.edu/~storn/code.html.

  4. 4.

    http://coco.gforge.inria.fr.

  5. 5.

    Measured as the number of function evaluations.

  6. 6.

    http://github.com/flacco.

  7. 7.

    http://scikit-learn.org/.

  8. 8.

    Additional plots are available at https://drive.google.com/open?id=0B9GuQcCjvwt FdkotR1h1N3dlOG8.

References

  1. Auger, A., Teytaud, O.: Continuous lunches are free plus the design of optimal optimization algorithms. Algorithmica (2009). https://hal.inria.fr/inria-00369788

  2. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Surrogate assisted feature computation for continuous problems. In: Proceedings of LION 10 (2016, to appear). https://hal.archives-ouvertes.fr/hal-01303320

  3. Bischl, B., Mersmann, O., Trautmann, H., Preuß, M.: Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 313–320. ACM (2012)

    Google Scholar 

  4. Bossek, J., Bischl, B., Wagner, T., Rudolph, G.: Learning feature-parameter mappings for parameter tuning via the profile expected improvement. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, pp. 1319–1326. ACM (2015)

    Google Scholar 

  5. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2010: experimental setup. Technical report, RR-7215, INRIA (2010)

    Google Scholar 

  6. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)

    Article  Google Scholar 

  7. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance prediction and automated tuning of randomized and parametric algorithms. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5, 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: methods & evaluation. Artif. Intell. 206, 79–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of optimization problems: the case of combinatorial auctions. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Lunacek, M., Whitley, D.: The dispersion metric and the cma evolution strategy. In: Proceedings of the 8th GECCO, pp. 477–484. ACM (2006)

    Google Scholar 

  12. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th GECCO, pp. 829–836. ACM (2011)

    Google Scholar 

  13. Munoz, M., Kirley, M., Halgamuge, S.K., et al.: Exploratory landscape analysis of continuous space optimization problems using information content. IEEE Trans. Evol. Comput. 19(1), 74–87 (2015)

    Article  Google Scholar 

  14. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: A meta-learning prediction model of algorithm performance for continuous optimization problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 226–235. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  16. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  18. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algorithm selection for sat. J. Artif. Intell. Res. 565–606 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nacim Belkhir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M. (2016). Feature Based Algorithm Configuration: A Case Study with Differential Evolution. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics