Hyperbolic Metamaterials for Single-Photon Sources and Nanolasers

  • M. Y. Shalaginov
  • R. Chandrasekar
  • S. Bogdanov
  • Z. Wang
  • X. Meng
  • O. A. Makarova
  • A. Lagutchev
  • A. V. Kildishev
  • A. Boltasseva
  • V. M. Shalaev
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 185)

Abstract

Hyperbolic metamaterials are anisotropic media that behave as metals or as dielectrics depending on light polarization. These plasmonic materials constitute a versatile platform for promoting both spontaneous and stimulated emission for a broad range of emitter wavelengths. We analyze experimental realizations of a single–photon source and of a plasmonic laser based on two different architectures of hyperbolic metamaterials. At the heart of this material capability lies the high broadband photonic density of states originating from a rich structure of confined plasmonic modes.

Keywords

Spontaneous Emission Effective Medium Theory Purcell Factor Photon Count Rate Purcell Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partially supported by AFOSR-MURI grant (FA9550-10-1-0264), NSF-MRSEC grant (DMR-1120923), and ONR grant (N00014-13-1-0649).

References

  1. 1.
    P.C. Clemmow, The theory of electromagnetic waves in a simple anisotropic medium. Proc. Inst. Electr. Eng. 110(1), 101 (1963)CrossRefGoogle Scholar
  2. 2.
    R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106(5), 874–881 (1957)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S.M. Rytov, Electromagnetic properties of a finely stratified medium. Sov. Phys. JETP 2(10) (1956)Google Scholar
  4. 4.
    D. Smith, D. Schurig, Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 90(7), 077405 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14(18), 8247–8256 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315(5819), 1686 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    S. Ishii, A.V. Kildishev, E. Narimanov, V.M. Shalaev, V.P. Drachev, Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Laser Photon. Rev. 7(2), 265–271 (2013)CrossRefGoogle Scholar
  8. 8.
    Z. Jacob, J.-Y. Kim, G.V. Naik, A. Boltasseva, E.E. Narimanov, V.M. Shalaev, Engineering photonic density of states using metamaterials. Appl. Phys. B 100(1), 215–218 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    A.D. Neira, N. Olivier, M.E. Nasir, W. Dickson, G.A. Wurtz, A.V Zayats, Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nat. Commun. 6, 7757 (2015)Google Scholar
  10. 10.
    S.-A. Biehs, M. Tschikin, P. Ben-Abdallah, Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 109(10), 104301 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    C. Shen, Y. Xie, N. Sui, W. Wang, S.A. Cummer, Y. Jing, Broadband acoustic hyperbolic metamaterial. Phys. Rev. Lett. 115(25), 1–5 (2015)CrossRefGoogle Scholar
  12. 12.
    E.E. Narimanov, A.V. Kildishev, Naturally hyperbolic. Nat. Photonics 9, 214–216 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    R. Chandrasekar, Z. Wang, X. Meng, M.Y. Shalaginov, A. Lagutchev, Y.L. Kim, A. Wei, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Lasing action with gold nanorod hyperbolic metamaterials. arXiv:1609.05168 (2016)
  14. 14.
    G.V Naik, B. Saha, J. Liu, S.M. Saber, E.A. Stach, J.M.K. Irudayaraj, T.D. Sands, V.M. Shalaev, A. Boltasseva, Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proc. Natl. Acad. Sci. 111(21), 7546–7551 (2014)Google Scholar
  15. 15.
    J. Elser, R. Wangberg, V.A. Podolskiy, E.E. Narimanov, Nanowire metamaterials with extreme optical anisotropy. Appl. Phys. Lett. 89(26), 261102 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    B.M. Wells, A.V. Zayats, V.A. Podolskiy, Nonlocal optics of plasmonic nanowire metamaterials. Phys. Rev. B 89(3), 35111 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    A.V. Chebykin, A.A. Orlov, A.V. Vozianova, S.I. Maslovski, Y.S. Kivshar, P.A. Belov, Nonlocal effective medium model for multilayered metal-dielectric metamaterials. Phys. Rev. B 84(11), 115438 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82(7), 071101 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    R.-M. Ma, R.F. Oulton, V.J. Sorger, X. Zhang, Plasmon lasers: coherent light source at molecular scales. Laser Photonics Rev. 7(1), 1–21 (2013)CrossRefGoogle Scholar
  20. 20.
    C. Monroe, Quantum information processing with atoms and photons. Nature 416(6877), 238–246 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    D. DiVincenzo, Quantum computation. Science 270(5234), 255–261 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    N. Gisin, G. Ribordy, H. Zbinden, Quantum cryptography. arXiv Prepr. quant-ph/0101098 (2001)Google Scholar
  23. 23.
    L.M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–418 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. 575–579 (1997)Google Scholar
  25. 25.
    A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski, Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276(5321), 2012–2014 (1997)CrossRefGoogle Scholar
  26. 26.
    C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Stable solid-state source of single photons. Phys. Rev. Lett. 85(2), 290–293 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    P. Tamarat, T. Gaebel, J.R. Rabeau, M. Khan, A.D. Greentree, H. Wilson, L.C.L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, J. Wrachtrup, Stark shift control of single optical centers in diamond 083002, 1–4 (2006)Google Scholar
  28. 28.
    G. Fuchs, V. Dobrovitski, R. Hanson, A. Batra, C. Weis, T. Schenkel, D. Awschalom, Excited-state spectroscopy using single spin manipulation in diamond. Phys. Rev. Lett. 101(11), 117601 (2008)Google Scholar
  29. 29.
    E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69 (1946)Google Scholar
  30. 30.
    S. Schietinger, O. Benson, Coupling single NV-centres to high-Q whispering gallery modes of a preselected frequency-matched microresonator. J. Phys. B: At. Mol. Opt. Phys. 42(11), 114001 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, C. Becher, One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat. Nanotechnol. 7(1), 69–74 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    A. Faraon, C. Santori, Z. Huang, V.M. Acosta, R.G. Beausoleil, Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109(3), 033604 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    M.Y. Shalaginov, V.V. Vorobyov, J. Liu, M. Ferrera, A.V. Akimov, A. Lagutchev, A.N. Smolyaninov, V.V. Klimov, J. Irudayaraj, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial. Laser Photon. Rev. 9(1), 120–127 (2015)Google Scholar
  34. 34.
    M.Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A.V. Kildishev, V.M. Shalaev, Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials. Appl. Phys. Lett. 102(17), 173114 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    D. Lu, J.J. Kan, E.E. Fullerton, Z. Liu, Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 9(1), 48–53 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    H.N.S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.M. Menon, Topological transitions in metamaterials. Science 336(6078), 205–209 (2012)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    T. Galfsky, H.N.S. Krishnamoorthy, W. Newman, E.E. Narimanov, Z. Jacob, V.M. Menon, Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction. Optica 2(1), 62 (2015)CrossRefGoogle Scholar
  38. 38.
    G.V. Naik, J.L. Schroeder, X. Ni, V. Alexander, T.D. Sands, A. Boltasseva, Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2(4), 534–537 (2012)CrossRefGoogle Scholar
  39. 39.
    Z. Jacob, I.I. Smolyaninov, E.E. Narimanov, Broadband Purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100(18), 181105 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    M.S. Yeung, T.K. Gustafson, Spontaneous emission near an absorbing dielectric surface. Phys. Rev. A 54(6), 5227–5242 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    L. Novotny, B. Hecht, Principles of nano-optics (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  42. 42.
    W.C. Chew, S. Chen, Response of a point source embedded in a layered medium. IEEE Antennas Wirel. Propag. Lett. 2(1), 254–258 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    K. Visscher, G.J. Brakenhoff, T.D. Visser, J. Microsc. 175(2), 162–165 (1994)Google Scholar
  44. 44.
    S.V. Zhukovsky, O. Kidwai, J.E. Sipe, Opt. Express 21(12), 14982–14987 (2013)Google Scholar
  45. 45.
    M.P. van Exter, G. Nienhuis, J.P. Woerdman, Two simple expressions for the spontaneous emission factor β. Phys. Rev. A 54(4), 3553–3558 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    M.T. Hill, M. Marell, E.S.P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P.J. van Veldhoven, E.J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, M.K. Smit, Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17(13), 11107 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C.M. Lieber, H.-G. Park, Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10(9), 3679–3683 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Demonstration of a spaser-based nanolaser. Nature 460(7259), 1110–1112 (2009)Google Scholar
  49. 49.
    X. Meng, A.V. Kildishev, K. Fujita, K. Tanaka, V.M. Shalaev, Wavelength-tunable spasing in the visible. Nano Lett. 13(9), 4106–4112 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    W. Zhou, M. Dridi, J.Y. Suh, C.H. Kim, D.T. Co, M.R. Wasielewski, G.C. Schatz, T.W. Odom, Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506–511 (2013)Google Scholar
  51. 51.
    F. van Beijnum, P.J. van Veldhoven, E.J. Geluk, M.J.A. de Dood, G.W. ’t Hooft, M.P. van Exter, Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110(20), 206802 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    X. Meng, J. Liu, A.V. Kildishev, V.M. Shalaev, Highly directional spaser array for the red wavelength region. Laser Photonics Rev. 8(6), 896–903 (2014)CrossRefGoogle Scholar
  53. 53.
    R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461(7264), 629–632 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    J.K. Kitur, L. Gu, T. Tumkur, C. Bonner, M.A. Noginov, Stimulated emission of surface plasmons on top of metamaterials with hyperbolic dispersion. ACS Photonics 2(8), 1019–1024 (2015)CrossRefGoogle Scholar
  55. 55.
    J.-M. Moon, A. Wei, Uniform gold nanorod arrays from polyethylenimine-coated alumina templates. J. Phys. Chem. B 109(49), 23336–23341 (2005)CrossRefGoogle Scholar
  56. 56.
    R. Starko-Bowes, J. Atkinson, W. Newman, H. Hu, T. Kallos, G. Palikaras, R. Fedosejevs, S. Pramanik, Z. Jacob, Optical characterization of epsilon-near-zero, epsilon-near-pole, and hyperbolic response in nanowire metamaterials. J. Opt. Soc. Am. B 32(10), 2074 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    M.Y. Shalaginov, S. Bogdanov, V.V Vorobyov, A.S. Lagutchev, A.V. Kildishev, A.V. Akimov, A. Boltasseva, V.M. Shalaev, Chapter 6: Enhancement of single-photon sources with metamaterials. In: From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities, ed. by S.A. Malinovskaya and I. Novikova, World Scientific, 123–148 (2015)Google Scholar
  58. 58.
    L.F. Shampine, Vectorized adaptive quadrature in MATLAB. J. Comput. Appl. Math. 211(2), 131–140 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    M. Frimmer, A. Mohtashami, A.Femius Koenderink, Nanomechanical method to gauge emission quantum yield applied to nitrogen-vacancy centers in nanodiamond. Appl. Phys. Lett. 102(12), 121105 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • M. Y. Shalaginov
    • 1
  • R. Chandrasekar
    • 1
  • S. Bogdanov
    • 1
  • Z. Wang
    • 1
  • X. Meng
    • 1
  • O. A. Makarova
    • 1
  • A. Lagutchev
    • 1
  • A. V. Kildishev
    • 1
  • A. Boltasseva
    • 1
  • V. M. Shalaev
    • 1
  1. 1.School of Electrical & Computer Engineering, Birck Nanotechnology Center, and Purdue Quantum CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations