Abstract
Recent successes in fabrication, characterization, numerical computations, and theory have brought to life a new class of composite materials with engineered optical properties, metamaterials. Uniaxial anisotropic artificially created structures based on plasmonic nanowire arrays have emerged as a versatile platform for negative refraction, subwavelength optics, biosensing, acoustic sensing, and nonlinearity engineering. It has been demonstrated, both experimentally and theoretically, that the optical response of plasmonic nanowire arrays is strongly affected by nonlocal electromagnetism, a phenomenon where permittivity of metamaterial strongly depends not only on the frequency, but also on wavevector of the plane wave interacting with this structure. Nonlocal dielectric response leads to excitation of additional electromagnetic wave that does not exist in conventional, local, metamaterials. The dispersion of this wave can be engineered by adjusting composition and geometry of metamaterial. In this chapter we present comprehensive review of nonlocal electromagnetic properties in plasmonic nanowire metamaterials. We begin by introducing the material platform, explain the theoretical approach for nonlocal homogenization, and finally discuss the implication of material nonlocality for emission of light in nonlocal environment.
Keywords
- Plasmonics
- Metamaterials
- Quantum optics
- Purcell effect
- Spatial dispersion
This is a preview of subscription content, access via your institution.
Buying options



















References
Nader Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317(5845), 1698–1702 (2007)
John B. Pendry, David R. Smith, Reversing light with negative refraction. Phys. Today 57, 37–43 (2004)
V.M. Shalaev, Optical negative-index metamaterials. Nat. Photonics 1(1), 41–48 (2007)
B. John Pendry, D. Schurig, R. David Smith, Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006)
W. Cai, et al. Optical cloaking with metamaterials. Nature photonics 1.4, pp. 224–227 (2007)
R. Atkinson, et al. Anisotropic optical properties of arrays of gold nanorods embedded in alumina. Phys. Rev. B 73.23, 235402 (2006)
J. Yao, et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321.5891, 930–930 (2008)
B.D.F. Casse et al., Super-resolution imaging using a three-dimensional metamaterials nanolens. Appl. Phys. Lett. 96(2), 023114 (2010)
Mário Silveirinha, Nader Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 97(15), 157403 (2006)
C. Erik Garnett, L. Mark Brongersma, Yi Cui, D. Michael Mc Gehee, Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011)
A. Aubry, D. Lei, A. Fernandez-Dominguez, Y. Sonnefraud, S.A. Maier, J.B. Pendry, Plasmonic light harvesting devices over the whole visible spectrum. Nano Lett. 10, 2574 (2010)
S.A. Maier, P. Kik, H.A. Atwater, S. Meltzer, E. Harel, B. Koel, A. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229 (2003)
V.A. Podolskiy, E.E. Narimanov, Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys. Rev. B 71, 201101(R) (2005)
M.A. Noginov and V.A. Podolskiy (eds.), Tutorials in Metamaterials (CRC Press, Boca Raton, FL, 2012)
N. Fung, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534 (2005)
L.V. Alexeyev, E.E. Narimanov, Slow light and 3D imaging with non-magnetic negative index systems. Opt. Exp. 14, 11184 (2006)
Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Exp. 14, 8247–8256 (2006)
Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007)
A. Salandrino, N. Engheta, Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006)
I.I. Smolyaninov, Y.J. Hung, C.C. Davis, Science 315, 1699 (2007)
E.M. Purcell, Phys. Rev. 69, 681 (1946)
A.N. Poddubny, P.A. Belov, P. Ginzburg, A.V. Zayats, Y.S. Kivshar, Microscopic model of Purcell enhancement in hyperbolic metamaterials. Phys. Rev. B 86, 035148 (2012)
I.V. Iorsh, A.N. Poddubny, P. Ginzburg, P.A. Belov, Y.S. Kivshar compton-like polariton scattering in hyperbolic metamaterials. Phys Rev. Lett. 114, 185501 (2015)
A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946 (2007)
A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, A.V. Zayats, Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867 (2009)
J. Kim, V.P. Drachev, Z. Jacob, G.V. Naik, A. Boltasseva, E.E. Narimanov, V.M. Shalaev, Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express 20, 7 (2012)
L. Alekseyev, V.A. Podolskiy, E. Narimanov, Homogeneous hyperbolic systems for terahertz and far-infrared frequencies. Adv. Optoelectron. 2012, 267564 (2012)
V.A. Podolskiy, L. Alekseyev, E.E. Narimanov, Strongly anisotropic media: the THz perspectives of left-handed materials. J. Mod. Opt. 52(16), 2343 (2005)
N. Vasilantonakis, G.A. Wurtz, V.A. Podolskiy, A.V. Zayats, Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement. Opt. Exp. 23, 14329 (2015)
S. Ishii, A.V. Kildishev, E. Narimanov, V.M. Shalaev, V.P. Drachev, Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Laser Photon. Rev. 7, 2 (2013)
W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials. Nat. Phot. 1, 224 (2007)
E.E. Narimanov, A.V. Kildishev, Optical black hole: Broadband omnidirectional light absorber. Appl. Phys. Lett. 95, 041106 (2009)
D.A. Genov, S. Zhang, X. Zhang, Mimicking celestial mechanics in metamaterials. Nat. Phys. Adv. online pub. NPHYS1338 (2009)
G.A. Wurtz, R. Pollard, W. Hendren, G.P. Wiederrecht, D.J. Gosztola, V.A. Podolskiy, A.V. Zayats, Designed nonlocality-enhanced sub-picosecond nonlinearities in plasmonic nanorod metamaterial. Nat. Nanotechnol. 6, 107 (2011)
G.A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, A.V. Zayats, Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime. Opt. Exp. 16, 7460 (2008)
S. Melle, J.L. Menendez, G. Armelles, D. Navas, M. Vanzquez, K. Nielsch, R.B. Wehrspohn, U. Gozele, Magneto-optical properties of nickel nanowire arrays. Appl. Phys. Lett. 83, 4547 (2003)
Y. Veniaminova, A.A. Stashkevich, Y. Roussigne, S.M. Cherif, T.V. Murzina, A.P. Murphy, R. Atkinson, R.J. Pollard, A.V. Zayats, Brillouin light scattering by spin waves in magnetic metamaterials based on Co nanordos. Opt. Mat. Exp 2, 1260 (2012)
B. Wells, A.V. Zayats, V.A. Podolskiy, Nonlocal optics of plasmonic nanowire metamaterials. Phys. Rev. B 89, 035111 (2014)
R.J. Pollard, A. Murphy, W.R. Hendren, P.R. Evans, R. Atkinson, G.A. Wurtz, A.V. Zayats, V.A. Podolskiy, Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 102, 127405 (2009)
T. Geng, S. Zhuang, J. Gao, X. Yang, Nonlocal effective medium approximation for metallic nanorod metamaterials. Phys. Rev. B. 91, 245128 (2015)
V.A. Podolskiy, P. Ginzburg, B. Wells, A.V. Zayats, Light emission in nonlocal plasmonic metamaterials. Faraday Discuss. 178, 61 (2015)
E.E. Narimanov, Infinite at any frequency: the photonic density of states in (meta)materials with hyperbolic dispersion and related phenomena, in Proceedings of SPIE Optics and Photonics, pp. 7754–09, 54 (2010); full manuscript is in press
H.K. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.M. Menon, Topological transitions in metamaterials. Science 336, 205 (2012)
O. Kidwai, S. Zhukovsky, J.E. Sipe, Opt. Lett. 36, 2530 (2011)
C.I. Cortes, W. Newman, S. Molesky, Z. Jacob, J. Opt. 14, 063001 (2012)
J.C.M. Garnett, Philos. Trans. R. Soc. London, Ser. B 203, 385 (1904)
G.W. Milton, The theory of composites (Cambridge U. Press, Cambridge, UK, 2002)
A.L. Pokrovsky, A.L. Efros, Nonlocal electrodynamics of two-dimensional wire mesh photonic crystals. Phys. Rev. B 65, 045110 (2002)
P.A. Belov, R. Marques, S.I. Maslovski, I.S. Nefedov, M. Silveirinha, C.R. Simovski, S.A. Tretyakov, Strong spatial dispersion in wire media in the very large wavelength limit. Phys. Rev. B 67, 113103 (2003)
M. Silveirinha, Nonlocal homogenization model for a periodic array of epsilon-negative rods. Phys. Rev. E 73, 046612 (2006)
V.L. Ginzburg, Electromagnetic waves in isotropic and crystalline media characterized by dielectric permittivity with spatial dispersion. JETP 34, 1096 (1958)
V.M. Agranovich, V.L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons, Springer Series in Solid-State Sciences, vol. 42 (Springer, Berlin, 1984)
M. Born, E. Wolf, Principles of Optics (Press, Cambridge U, 1999)
M.O. Scully, M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997)
P. Ginzburg, Accelerating spontaneous emission in open resonators. Annalen der Physik (2016)
J.E. Sipe, Photons in dispersive dielectrics. J. Opt. A: Pure Appl. Opt. 11, 114006 (2009)
C.A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 2005)
A.P. Slobozhanyuk, P. Ginzburg, D.A. Powell, I. Iorsh, A.S. Shalin, P. Segovia, A.V. Krasavin et al., Phys. Rev. B 92, 195127 (2015)
P. Ginzburg, A.V. Krasavin, A.N. Poddubny, P.A. Belov, Y.S. Kivshar, A.V. Zayats, Phys. Rev. Lett. 111, 036804 (2013)
Vogel, W. Welsch, D-G, Quantum Optics, 3rd, Revised and Extended Edition (Wiley 2006)
S.M. Barnett, B. Huttner, R. Loudon, Phys. Rev. Lett. 68, 3698 (1992)
H.T. Dung, S.Y. Buhmann, D.G. Welsch, Phys. Rev. A 74, 023803 (2006)
S. Scheel, L. Knoll, D.G. Welsch, Phys. Rev. A 60, 4094 (1999)
S. Scheel, L. Knoll, D.G. Welsch, Phys. Rev. A 61, 069901 (2000)
L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge U Press, Cambridge UK, 2006)
S.R.J. Brueck, IEEE J. Sel. Top. Quantum Elctron. 6, 899 (2000)
A.P. Slobozhanyuk, P. Ginzburg, D.A. Powell, I. Iorsh, A.S. Shalin, P. Segovia, A.V. Krasavin, G.A. Wurtz, V.A. Podolskiy, P.A. Belov, A.V. Zayats, Purcell effect in hyperbolic metamaterial resonators. Phys. Rev. B 92, 195127 (2015)
J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)
G.W. Ford, W.H. Weber, Electromagnetic effects on a molecule at a metal surface: I. Effects of nonlocality and finite molecular size. Surf. Sci. 109, 451–481 (1981)
R. Bonifacio, L.A. Lugiato, Cooperative radiation processes in two-level systems: superfluorescence. Phys. Rev. A 11, 1507 (1975)
D. Martín-Cano, L. Martín-Moreno, F.J. García-Vidal, E. Moreno, Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides. Nano Lett. 10, 3129–3134 (2010)
T. Tumkur, G. Zhu, P. Black, Y.A. Barnakov, C.E. Bonner, M.A. Noginov, Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial. Appl. Phys. Lett. 99, 151115 (2011)
Acknowledgements
This work has been funded in part by ESPRC (UK), the ERC iPLASMM project (321268), and the US Army Research Office (Grant No. W911NF-12-1-0533). A.Z. acknowledges support from the Royal Society and the Wolfson Foundation. P.G. acknowledges TAU Rector Grant and German-Israeli Foundation (GIF, grant number 2399).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Wells, B., Ginzburg, P., Podolskiy, V.A., Zayats, A.V. (2017). Spontaneous Emission in Nonlocal Metamaterials with Spatial Dispersion. In: Bozhevolnyi, S., Martin-Moreno, L., Garcia-Vidal, F. (eds) Quantum Plasmonics. Springer Series in Solid-State Sciences, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-319-45820-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-45820-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45819-9
Online ISBN: 978-3-319-45820-5
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)