Skip to main content

Online Prediction for Forex with an Optimized Experts Selection Model

  • Conference paper
  • First Online:
Web Technologies and Applications (APWeb 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9931))

Included in the following conference series:

  • 2265 Accesses

Abstract

Online prediction is a process to repeatedly predict the next element from a sequence of given previous elements. It has a broad range of applications on various areas, such as medical and finance. The biggest challenge of online prediction is sequence data does not have explicit features, which means it is difficult to remain good predictions. One of popular solution is to make prediction with expert advice, and the challenge is to pick the right experts with minimum cumulative loss. In this article, we use forex prediction as a case study, and propose a model that can select a good set of forex experts by learning a set of previous observed sequences. To achieve better performance, our model not only considers the average mistakes made by experts but also takes the average profit earn by experts into account. We demonstrate the merits of our model on a real major currency pairs data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://finance.yahoo.com/.

References

  1. Duskin, O., Feitelson, D.G.: Distinguishing humans from robots in web search logs: preliminary results using query rates and intervals. In: Proceedings of the 2009 Workshop on Web Search Click Data, WSCD 2009, pp. 15–19 (2009)

    Google Scholar 

  2. Kadous, M.W., Sammut, C.: Classification of multivariate time series and structured data using constructive induction. In: Proceedings of the IEEE ISI PAISI, PACCF, and SOCO International Workshops on Intelligence and Security Informatics, PAISI, PACCF and SOCO 2008, pp. 179–261 (2006)

    Google Scholar 

  3. Liu, X., Zhang, P., Zeng, D.: Sequence matching for suspicious activity detection in anti-money laundering. In: Yang, C.C., Chen, H., Chau, M., Chang, K., Lang, S.-D., Chen, P.S., Hsieh, R., Zeng, D., Wang, F.-Y., Carley, K.M., Mao, W., Zhan, J. (eds.) ISI Workshops 2008. LNCS, vol. 5075, pp. 50–61. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Tan, P.N., Kumar, V.: Discovery of web robot sessions based on their navigational patterns. Data Min. Knowl. Discov. 6, 9–35 (2002)

    Article  MathSciNet  Google Scholar 

  5. Hutter, M.: On the foundations of universal sequence prediction. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 408–420. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Kajan, L., Kertesz-Farkas, A., Franklin, D., Ivanova, N., Kocsor, A., Pongor, S.: Application of a simple likelihood ratio approximant to protein sequence classification. Bioinformatic 2865–2869 (2006)

    Google Scholar 

  7. Wang, J., Zhao, P., Hoi, S.C.H.: Cost-sensitive online classification. In: ICDM, pp. 1140–1145 (2012)

    Google Scholar 

  8. Wang, J., Zhao, P., Hoi, S.C.H., Jin, R.: Online feature selection and its applications. IEEE Trans. Knowl. Data Eng., 1–14 (2013)

    Google Scholar 

  9. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput. 108, 212–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear threshold algorithm. Mach. Learn. 2, 285–318 (1988)

    Google Scholar 

  11. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958)

    Article  MathSciNet  Google Scholar 

  12. Valiant, L.G.: A theory of the learnable. Comm. ACM 27, 1134–1142 (1984)

    Article  MATH  Google Scholar 

  13. Blum, A.: Separating distribution-free and mistake-bound learning models over the boolean domain. SIAM J. Comput. 23(5), 990–1000 (1994)

    Article  MathSciNet  Google Scholar 

  14. Lewis, D.D.: Naive (bayes) at forty: the independence assumption in information retrieval. In: The 10th European Conference on Machine Learning, ECML 1998, pp. 4–15 (1998)

    Google Scholar 

  15. Yakhnenko, O., Silvescu, A., Honavar, V.: Discriminatively trained markov model for sequence classification. In: Proceedings of the Fifth IEEE International Conference on Data Mining, ICDM 2005, pp. 498–505 (2005)

    Google Scholar 

  16. Eban, E., Globerson, A., Shalev-Shwartz, S., Birnbaum, A.: Learning the exerts for online sequence prediction. In: ICML, pp. 1–8 (2012)

    Google Scholar 

  17. Cesa-Bianchia, N., Freund, Y., Helmbold, D.P., Haussler, D., Schapire, R.E., Warmuth, M.K.: How to use expert advice. In: Annual ACM Symposium on Theory of Computeing, pp. 382–391 (1993)

    Google Scholar 

  18. Foster, D.P., Vohra, R.V.: A randomeization rule for selecting forecasts. Oper. Res. 41, 704–709 (1993)

    Article  MATH  Google Scholar 

  19. Abernethy, J., Bartlett, P.L., Rakhlin, A.: Multitask learning with expert advice. In: Bshouty, N.H., Gentile, C. (eds.) COLT. LNCS (LNAI), vol. 4539, pp. 484–498. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 261–270 (2007)

    Article  Google Scholar 

  21. Yu, C.N., Joachims, T.: Learning structural svms with latent variables. In: ICML, 1169–1176 (2009)

    Google Scholar 

  22. Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic automata with variable memory length. Mach. Learn. 25, 117–149 (1996)

    Article  MATH  Google Scholar 

  23. Zhao, P., Hoi, S., Zhuang, J.: Active learning with expert advice. In: Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pp. 1–10 (2013)

    Google Scholar 

  24. Vapnik, V.: The Nature of Statistical Learning Theory. Information Science and Statistics. Springer, New York (2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Youth Teacher Startup Fund of South China Normal University (No. 14KJ18), the Natural Science Foundation of Guangdong Province, China (No. 2015A030310509), the National Science Foundation of China (61370229, 61272067, 61303049), and the S&T Projects of Guangdong Province (No. 2013B090800024, No. 2014B010103004, No. 2014B010117007, No. 2016A030303055, No. 2016B030305004, 2016B010109008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhu, J., Yang, J., Xiao, J., Huang, C., Zhao, G., Tang, Y. (2016). Online Prediction for Forex with an Optimized Experts Selection Model. In: Li, F., Shim, K., Zheng, K., Liu, G. (eds) Web Technologies and Applications. APWeb 2016. Lecture Notes in Computer Science(), vol 9931. Springer, Cham. https://doi.org/10.1007/978-3-319-45814-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45814-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45813-7

  • Online ISBN: 978-3-319-45814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics