Skip to main content

Neuronal Imaging in Heart Failure

  • Chapter
  • First Online:
Atlas of Cardiac Innervation

Abstract

The parasympathetic nervous system uses chiefly acetylcholine (ACh) as its neurotransmitter, although peptides (such as cholecystokinin) may act on the parasympathetic nervous system as a neurotransmitter. ACh acts on two types of receptors: the muscarinic and nicotinic cholinergic receptors. Most transmissions occur in two stages: When stimulated, the preganglionic nerve releases ACh at the ganglion, which acts on nicotinic receptors of postganglionic neurons. The postganglionic nerve then releases ACh to stimulate the muscarinic receptors of the target organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Travin M. Cardiac autonomic imaging with SPECT tracers. J Nucl Cardiol. 2013;20(1):128–43.

    Article  PubMed  Google Scholar 

  2. Travin M. Cardiac radionuclide imaging to assess patients with heart failure. Semin Nucl Med. 2014;44(4):294–313.

    Article  PubMed  Google Scholar 

  3. Peix A, Mesquita CT, Paez D, Pereira CC, Felix R, Gutierrez C, Jaimovich R, Ianni BM, Soares Jr J, Olaya P, Rodriguez MV, Flotats A, Giubbini R, Travin M, Garcia EV. Nuclear medicine in the management of patients with heart failure: guidance from an expert panel of the International Atomic Energy Agency (IAEA). Nucl Med Commun. 2014;35(8):818–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Patel AD, Iskandrian AE. MIBG imaging. J Nucl Cardiol. 2002;9(1):75–94.

    Article  PubMed  Google Scholar 

  5. Yamashina S, Yamazaki J. Neuronal imaging using SPECT. Eur J Nucl Med Mol Imaging. 2007;34:939–50.

    Article  PubMed  Google Scholar 

  6. Flotats A, Carrio I, Agostini D, Le Guludec D, Marcassa C, Schaffers M, Somsen GA, Unlu M, Verberne HJ. Proposal for standardization of (123)I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging. 2010;37:1802–12.

    Article  PubMed  Google Scholar 

  7. Merlet P, Benvenuti C, Moyse D, Pouillart F, Dubois-Rande JL, Duval AM, Loisance D, Castaigne A, Syrota A. Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med. 1999;40:917–23.

    CAS  PubMed  Google Scholar 

  8. Yamada T, Shimonagata T, Fukunami M, et al. Comparison of the prognostic value of cardiac iodine-123 mIBG imaging and heart rate variability in patients with chronic heart failure: a prospective study. J Am Coll Cardiol. 2003;41:231–8.

    Article  PubMed  Google Scholar 

  9. Verberne HJ, Brewster LM, Somsen GA, Eck-Smit BL. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J. 2008;29:1147–59.

    Article  PubMed  Google Scholar 

  10. Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S, Matsui T, Matsuo S, Travin MI, Jacobson AF. A pooled analysis of multicenter cohort studies of I-123-mIBG cardiac sympathetic innervation imaging for assessment of long-term prognosis in chronic heart failure. JACC Cardiovasc Imaging. 2013;6:772–84.

    Article  PubMed  Google Scholar 

  11. Verschure DO, Veltman CE, Manrique A, Somsen GA, Koutelou M, Katsikis A, Agostini D, Gerson MC, van Eck-Smit BLF, Scholte AJHA, Jacobson AF, Verberne HJ. For what endpoint does myocardial 123I-MIBG scintigraphy have the greatest prognostic value in patients with heart failure? Results of a pooled individual patient data meta-analysis. Eur Heart J Cardiovasc Imaging. 2014;15(9):996–1003.

    Article  PubMed  Google Scholar 

  12. Estorch M, Camprecios M, Flotats A, Mari C, Berna L, Catafau AM, Ballester M, Narula J, Carrio I. Sympathetic reinnervation of cardiac allografts evaluated by 123I-MIBG imaging. J Nucl Med. 1999;40:911–6.

    CAS  PubMed  Google Scholar 

  13. Agostini D, Belin A, Amar MH, Darlas Y, Hamon M, Grollier G, Potier JC, Bouvard G. Improvement of cardiac neuronal function after carvedilol treatment in dilated cardiomyopathy: a 123I-MIBG scintigraphic study. J Nucl Med. 2000;41:845–51.

    CAS  PubMed  Google Scholar 

  14. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M. Effect of spironolactone on cardiac sympathetic nerve activity and left ventricular remodeling in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2003;41:574–81.

    Article  CAS  PubMed  Google Scholar 

  15. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M. Addition of valsartan to an angiotensin-converting enzyme inhibitor improves cardiac sympathetic nerve activity and left ventricular function in patients with congestive heart failure. J Nucl Med. 2003;44:884–90.

    CAS  PubMed  Google Scholar 

  16. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M. Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: comparison with enalapril. Eur J Nucl Med Mol Imaging. 2005;32:964–71.

    Article  CAS  PubMed  Google Scholar 

  17. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M. Effects of candesartan on cardiac sympathetic nerve activity in patients with congestive heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2005;45:661–7.

    Article  CAS  PubMed  Google Scholar 

  18. Cha YM, Oh J, Miyazaki C, Hayes DL, Rea RF, Shen WK, Asirvatham SJ, Kemp BJ, Hodge DO, Chen PS, Chareonthaitawee P. Cardiac resynchronization therapy upregulates cardiac autonomic control. J Cardiovasc Electrophysiol. 2008;19:1045–52.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Drakos SG, Athanasoulis T, Malliaras KG, Terrovitis JV, Diakos N, Koudoumas D, Ntalianis AS, Theodoropoulos SP, Yacoub MH, Nanas JN. Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. JACC Cardiovasc Imaging. 2010;3:64–70.

    Article  PubMed  Google Scholar 

  20. Mcghie AI, Corbett JR, Akers MS, Kulkarni P, Sills MN, Kremers M, Buja LM, Durant-Reville M, Parkey RW, Willerson JT. Regional cardiac adrenergic function using I-123 meta-iodobenzylguanidine tomographic imaging after acute myocardial infarction. Am J Cardiol. 1991;67:236–42.

    Article  CAS  PubMed  Google Scholar 

  21. Yukinaka M, Nomura M, Ito S, Nakaya Y. Mismatch between myocardial accumulation of 123I-MIBG and 99mTc-MIBI and late ventricular potentials in patients after myocardial infarction: association with the development of ventricular arrhythmias. Am Heart J. 1998;136:859–67.

    Article  CAS  PubMed  Google Scholar 

  22. Simoes MV, Barthel P, Matsunari I, Nekolla SG, Schomig A, Schwaiger M, Schmidt G, Bengel FM. Presence of sympathetically denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute myocardial infarction. Eur Heart J. 2004;25:551–7.

    Article  PubMed  Google Scholar 

  23. Henneman MM, Bengel FM, Bax JJ. Will innervation imaging predict ventricular arrhythmias in ischaemic cardiomyopathy? Eur J Nucl Med Mol Imaging. 2006;33:862–5.

    Article  PubMed  Google Scholar 

  24. Bax JJ, Kraft O, Buxton AE, Fjeld JG, Parizek P, Agostini D, et al. 123 I-mIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc Imaging. 2008;1:131–40.

    Article  PubMed  Google Scholar 

  25. Shapiro B, Wieland D, Brown LE, Nakajo M, Sisson JC, Beierwaltes WH. 131-meta-iodobenzylguanidine (MIBG) adrenal medullary scintigraphy. Interventional nuclear medicine. New York: Grune and Stratton, Inc; 1984. pp. 451–81.

    Google Scholar 

  26. Smets LA, Bout B, Wisse J. Cytotoxic and antitumor effects of the norepinephrine analogue Meta-Iodo-Benzylguanidine (MIBG). Cancer Chemother Pharmacol. 1988;21(1):9–13.

    Article  CAS  PubMed  Google Scholar 

  27. Ekelund S, Nygren P, Larsson R. Guanidino-Containing Drugs in Cancer Chemotherapy: Biochemical and Clinical Pharmacology. Biochem Pharmacol. 2001;61(10):1183–93.

    Article  CAS  PubMed  Google Scholar 

  28. Dae MW, De Marco T, Botvinick EH, O’Connell JW, Hattner RS, Huberty JP, Yuen-Green MS. Scintigraphic Assessment of MIBG uptake in globally denervated human and canine hearts--Implications for clinical studies. J Nucl Med. 1992;33(8):1444–50.

    CAS  PubMed  Google Scholar 

  29. DeGrado TR, Zalutsky MR, Vaidyanathan G. Uptake Mechanisms of Meta-[123I]Iodobenzylguanidine in Isolated Rat Heart. Nucl Med Biol. 1995;22(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  30. Mangner TJ, Tobes MC, Wieland DW, Sisson JC, Shapiro B. Metabolism of Iodine-131 Metaiodobenzylguanidine in Patients With Metastatic Phaeochromocytoma. J Nucl Med. 1986;27(1):37–44.

    CAS  PubMed  Google Scholar 

  31. Tobes MC, Fig LM, Carey J, Geatti O, Sisson JC, Shapiro B. Alterations of iodine-131 MIBG biodistribution in an anephric patient: Comparison to normal and impaired renal function. J Nucl Med. 1989;30(9):1476–82.

    CAS  PubMed  Google Scholar 

  32. Kline RC, Swanson DP, Wieland DM, Thrall JH, Gross MD, Pitt B, Beierwaltes WH. Myocardial imaging in man with I-123 meta-iodobenzylguanidine. J Nucl Med. 1981;22:129–32.

    CAS  PubMed  Google Scholar 

  33. Narula J, Sarkar K. A conceptual paradox of MIBG uptake in heart failure: retention with incontinence! J Nucl Cardiol. 2003;10(6):700–4.

    Article  PubMed  Google Scholar 

  34. Leimbach Jr WN, Wallin BG, Victor RG, Aylward PE, Sundlof G, Mark AL. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation. 1986;73(5):913–9.

    Article  PubMed  Google Scholar 

  35. Bohm M, La Rosee K, Schwinger RH, Erdmann E. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol. 1995;25(1):146–53.

    Article  CAS  PubMed  Google Scholar 

  36. Sisson JC, Wieland DM. Radiolabelled Meta-Iodobenzylguanidine: Pharmacology and clinical studies. Am J Physiol Imaging. 1986;1(2):96–103.

    CAS  PubMed  Google Scholar 

  37. Inoue Y, Suzuki A, Shirouzu I, Machida T, Yoshizawa Y, Akita F, Ohnishi S, Yoshikawa K, Ohtomo K. Effect of collimator choice on quantitative assessment of cardiac iodine 123 MIBG uptake. J Nucl Cardiol. 2003;10:623–32.

    Article  PubMed  Google Scholar 

  38. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial Iodine-123 Meta-Iodobenzylguanidine Imaging and Cardiac Events in Heart Failure Results of the Prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) Study. J Am Coll Cardiol. 2010;55:2212–21.

    Article  PubMed  Google Scholar 

  39. Marshall A, Cheetham A, George RS, Mason M, Kelion AD. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts ventricular arrhythmia in heart failure patients receiving an implantable cardioverter-defibrillator for primary prevention. Heart. 2012;98(18):1359–65.

    Article  PubMed  Google Scholar 

  40. Bengel FM, Schwaiger M. Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol. 2004;11:603–16.

    Article  PubMed  Google Scholar 

  41. Estorch M, Carrio I, Mena E, Flotats A, Camacho V, Fuertes J, Kulisewsky J, Narula J. Challenging the neuronal MIBG uptake by pharmacological intervention: effect of a single dose of oral amitriptyline on regional cardiac MIBG uptake. Eur J Nucl Med Mol Imaging. 2004;31:1575–80.

    Article  CAS  PubMed  Google Scholar 

  42. Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, Masuda M, Okuda K, Iwasaki Y, Yasui T, Hori M, Fukunami M. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol. 2009;53:426–35.

    Article  CAS  PubMed  Google Scholar 

  43. Agostini D, Verberne HJ, Burchert W, Knuuti J, Povinec P, Sambuceti G, Unlu M, Estorch M, Banerjee G, Jacobson AF. I-123-mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging. 2008;35:535–46.

    Article  PubMed  Google Scholar 

  44. Senior R, Agostini D, Travin M, Caldwell JH, Gerson MC, Jacobson AF. Imaging of myocardial sympathetic innervation for prediction of arrhythmic events in heart failure patients: Insights from the ADMIRE-HF trial (abstr). Presented at the American Heart Association 2009 Annual Meeting, Orlando.

    Google Scholar 

  45. Verberne HJ, Henzlova MJ, Jain D, Van Eck-Smit BLF, Carrió I, Jacobson AF, Travin M. 123I-mIBG and 99mTc-tetrofosmin SPECT for prediction of arrhythmic risk in ischemic heart failure patients (abstr). Presented at the Society of Nuclear Medicine 2014 Annual Meeting, St. Louis.

    Google Scholar 

  46. Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, Dibbets-Schneider P, Stokkel MP, van der Wall EE, Schalij MJ, Bax JJ. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol. 2010;55:2769–77.

    Article  PubMed  Google Scholar 

  47. Shah AM, Bourgoun M, Narula J, Jacobson AF, Solomon SD. Influence of ejection fraction on the prognostic value of sympathetic innervation imaging with iodine-123 meta-iodobenzylguanidine (123I-mIBG) in heart failure. JACC Cardiovasc Imaging. 2012;5:1139–46.

    Article  PubMed  Google Scholar 

  48. Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113:1424–33.

    Article  PubMed  Google Scholar 

  49. Ketchum ES, Jacobson AF, Caldwell JH, Senior R, Cerqueira MD, Thomas GS, Agostini D, Narula J, Levy WC. Selective improvement in Seattle heart failure model risk stratification using Iodine-123 meta-iodobenzylguanidine imaging. J Nucl Cardiol. 2012;19:1007–16.

    Article  PubMed  Google Scholar 

  50. Jain KK, Hauptman PJ, Spertus JA, Kennedy KF, Bateman TM, Jacobson AF, Stolker JM. Incremental utility of iodine-123 Meta-Iodobenzylguanidine imaging beyond established heart failure risk models. J Card Fail. 2014;20:577–83.

    Article  PubMed  Google Scholar 

  51. Toyama T, Hoshizaki H, Yoshimura Y, Kasama S, Isobe N, Adachi H, Oshima S, Taniguchi K. Combined therapy with carvedilol and amiodarone is more effective in improving cardiac symptoms, function, and sympathetic nerve activity in patients with dilated cardiomyopathy: comparison with carvedilol therapy alone. J Nucl Cardiol. 2008;15:57–64.

    Article  PubMed  Google Scholar 

  52. Suwa M, Otake Y, Moriguchi A, Ito T, Hirota Y, Kawamura K, Adachi I, Narabayashi I. Iodine-123 metaiodobenzylguanidine myocardial scintigraphy for prediction of response to beta-blocker therapy in patients with dilated cardiomyopathy published erratum appears in Am Heart J 1997 Dec;134(6):1141¿. Am Heart J. 1997;133:353–8.

    Article  CAS  PubMed  Google Scholar 

  53. Yamazaki J, Muto H, Kabano T, Yamashina S, Nanjo S, Inoue A. Evaluation of beta-blocker therapy in patients with dilated cardiomyopathy--Clinical meaning of iodine 123-metaiodobenzylguanidine myocardial single-photon emission computed tomography. Am Heart J. 2001;141:645–52.

    Article  CAS  PubMed  Google Scholar 

  54. Kasama S, Toyama T, Hatori T, Sumino H, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M. Evaluation of cardiac sympathetic nerve activity and left ventricular remodelling in patients with dilated cardiomyopathy on the treatment containing carvedilol. Eur Heart J. 2007;28:989–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold F. Jacobson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jacobson, A.F., Narula, J. (2017). Neuronal Imaging in Heart Failure. In: Dilsizian, V., Narula, J. (eds) Atlas of Cardiac Innervation. Springer, Cham. https://doi.org/10.1007/978-3-319-45800-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45800-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45798-7

  • Online ISBN: 978-3-319-45800-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics