Skip to main content

Neural Control of Cardiac Function in Health and Disease

  • Chapter
  • First Online:
Atlas of Cardiac Innervation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K. Cardiac innervation and sudden cardiac death. Circ Res. 2015;116:2005–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Armour JA. Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp Physiol. 2008;93:165–76.

    Article  CAS  PubMed  Google Scholar 

  3. Gray MA, Taggart P, Sutton PM, Groves D, Holdright DR, Bradbury D, Brull D, Critchley HD. A cortical potential reflecting cardiac function. Proc Natl Acad Sci U S A. 2007;104:6818–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oppenheimer S, Hopkins D. Suprabulbar neuronal regulation of the heart. In: Armour JA, Ardell JL, editors. Neurocardiology. New York: Oxford University Press; 1994. p. 309–42.

    Google Scholar 

  5. Zipes DP, Wellens HJ. Sudden cardiac death. Circulation. 1998;98:2334–51.

    Article  CAS  PubMed  Google Scholar 

  6. Chugh SS, Reinier K, Teodorescu C, Evanado A, Kehr E, Al Samara M, Mariani R, Gunson K, Jui J. Epidemiology of sudden cardiac death: clinical and research implications. Prog Cardiovasc Dis. 2008;51:213–28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vaseghi M, Shivkumar K. The role of the autonomic nervous system in sudden cardiac death. Prog Cardiovasc Dis. 2008;50:404–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buckley U, Shivkumar K, Ardell JL. Autonomic regulation therapy in heart failure. Curr Heart Fail Rep. 2015;12:284–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Premchand RK, Sharma K, Mittal S, Monteiro R, Dixit S, Libbus I, DiCarlo LA, Ardell JL, Rector TS, Amurthur B, KenKnight BH, Anand IS. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the anthem-hf trial. J Card Fail. 2014;20:808–16.

    Article  PubMed  Google Scholar 

  10. Vaseghi M, Gima J, Kanaan C, Ajijola OA, Marmureanu A, Mahajan A, Shivkumar K. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long-term follow-up. Heart Rhythm. 2014;11:360–6.

    Article  PubMed  Google Scholar 

  11. Ajijola OA, Lellouche N, Bourke T, Tung R, Ahn S, Mahajan A, Shivkumar K. Bilateral cardiac sympathetic denervation for the management of electrical storm. J Am Coll Cardiol. 2012;59:91–2.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jänig W. Sympathetic nervous system and inflammation: a conceptual view. Auton Neurosci. 2014;182:4–14.

    Article  PubMed  Google Scholar 

  13. Janig W. Functional anatomy of the peripheral sympathetic and parasympathetic system. In: Janig W, editor. The integrative action of the autonomic nervous system: neurobiology of homeostasis. Cambridge: Cambridge University Press; 2006. p. 13–34.

    Chapter  Google Scholar 

  14. Palma JA, Benarroch EE. Neural control of the heart: recent concepts and clinical correlations. Neurology. 2014;83:261–71.

    Article  PubMed  Google Scholar 

  15. Kuntz A. The autonomic nervous system. Philadelphia: Lea & Febiger; 1934.

    Google Scholar 

  16. Armour JA. Activity of in situ middle cervical ganglion neurons in dogs, using extracellular recording techniques. Can J Physiol Pharmacol. 1985;63:704–16.

    Article  CAS  PubMed  Google Scholar 

  17. Armour JA, Janes RD. Neuronal activity recorded extracellularly from in situ canine mediastinal ganglia. Can J Physiol Pharmacol. 1988;66:119–27.

    Article  CAS  PubMed  Google Scholar 

  18. Armour JA, Kember G. Cardiac sensory neurons. In: Armour JA, Ardell JL, editors. Basic and clinical neurocardiology. New York: Oxford University Press; 2004. p. 79–117.

    Google Scholar 

  19. Waxman S. Clinical neuroanatomy. New York: McGraw Hill; 2013.

    Google Scholar 

  20. Cardinal R, Pagé P, Vermeulen M, Ardell JL, Armour JA. Spatially divergent cardiac responses to nicotinic stimulation of ganglionated plexus neurons in the canine heart. Auton Neurosci. 2009;145:55–62.

    Article  CAS  PubMed  Google Scholar 

  21. Randall WC, Priola DV, Pace JB. Responses of individucal cardiac chambers to stimulation of the cervical vagosympathetic trunk in atropinized dogs. Circ Res. 1967;20:534–44.

    Article  CAS  PubMed  Google Scholar 

  22. Seki A, Green HR, Lee TD, Hong L, Tan J, Vinters HV, Chen PS, Fishbein MC. Sympathetic nerve fibers in human cervical and thoracic vagus nerves. Heart Rhythm. 2014;11:1411–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bonaz B, Picq C, Sinniger V, Mayol JF, Clarençon D. Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol Motil. 2013;25:208–21.

    Article  CAS  PubMed  Google Scholar 

  24. Woodbury DM, Woodbury JW. Effects of vagal stimulation on experimentally induced seizures in rats. Epilepsia. 1990;31 Suppl 2:S7–19.

    Article  PubMed  Google Scholar 

  25. Yoo PB, Lubock NB, Hincapie JG, Ruble SB, Hamann JJ, Grill WM. High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog. J Neural Eng. 2013;10:026003.

    Article  PubMed  Google Scholar 

  26. Huang WA, Shivkumar K, Vaseghi M. Device-based autonomic modulation in arrhythmia patients: the role of vagal nerve stimulation. Curr Treat Options Cardiovasc Med. 2015;17:379.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Janes RD, Brandys JC, Hopkins DA, Johnstone DE, Murphy DA, Armour JA. Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol. 1986;57:299–309.

    Article  CAS  PubMed  Google Scholar 

  28. Haws CW, Lux RL. Correlation between in vivo transmembrane action potential durations and activation-recovery intervals from electrograms. Effects of interventions that alter repolarization time. Circulation. 1990;81:281–8.

    Google Scholar 

  29. Vaseghi M, Yamakawa K, Sinha A, So EL, Zhou W, Ajijola OA, Lux RL, Laks M, Shivkumar K, Mahajan A. Modulation of regional dispersion of repolarization and t-peak to t-end interval by the right and left stellate ganglia. Am J Physiol Heart Circ Physiol. 2013;305:H1020–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vaseghi M, Zhou W, Shi J, Ajijola OA, Hadaya J, Shivkumar K, Mahajan A. Sympathetic innervation of the anterior left ventricular wall by the right and left stellate ganglia. Heart Rhythm. 2012;9:1303–9.

    Article  PubMed  Google Scholar 

  31. Yamakawa K, So EL, Rajendran PS, Hoang JD, Makkar N, Mahajan A, Shivkumar K, Vaseghi M. Electrophysiological effects of right and left vagal nerve stimulation on the ventricular myocardium. Am J Physiol Heart Circ Physiol. 2014;307(5):H722–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Armour JA. Myocardial ischaemia and the cardiac nervous system. Cardiovasc Res. 1999;41:41–54.

    Article  CAS  PubMed  Google Scholar 

  33. Ardell JL. Sensory transduction of the ischemic myocardium. Am J Physiol Heart Circ Physiol. 2010;299:H1753–4.

    Article  CAS  PubMed  Google Scholar 

  34. Hua F, Ricketts BA, Reifsteck A, Ardell JL, Williams CA. Myocardial ischemia induces the release of substance p from cardiac afferent neurons in rat thoracic spinal cord. Am J Physiol Heart Circ Physiol. 2004;286:H1654–64.

    Article  CAS  PubMed  Google Scholar 

  35. Langley JN. The autonomic nervous system: part I. Cambridge: W. Heffer & Sons; 1921.

    Google Scholar 

  36. Yuan BX, Ardell JL, Hopkins DA, Losier AM, Armour JA. Gross and microscopic anatomy of the canine intrinsic cardiac nervous system. Anat Rec. 1994;239:75–87.

    Article  CAS  PubMed  Google Scholar 

  37. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec. 1997;247:289–98.

    Article  CAS  PubMed  Google Scholar 

  38. Arora RC, Waldmann M, Hopkins DA, Armour JA. Porcine intrinsic cardiac ganglia. Anat Rec A Discov Mol Cell Evol Biol. 2003;271:249–58.

    Article  CAS  PubMed  Google Scholar 

  39. McGuirt AS, Schmacht DC, Ardell JL. Autonomic interactions for control of atrial rate are maintained after sa nodal parasympathectomy. Am J Physiol. 1997;272:H2525–33.

    CAS  PubMed  Google Scholar 

  40. Hoover DB, Shepherd AV, Southerland EM, Armour JA, Ardell JL. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium. Auton Neurosci. 2008;141:38–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoover DB, Isaacs ER, Jacques F, Hoard JL, Pagé P, Armour JA. Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia. Neuroscience. 2009;164:1170–9.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B, Chen PS. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res. 2004;95:76–83.

    Article  CAS  PubMed  Google Scholar 

  43. Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, Czer L, Wolf PL, Denton TA, Shintaku IP, Chen PS, Chen LS. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101:1960–9.

    Article  CAS  PubMed  Google Scholar 

  44. Vracko R, Thorning D, Frederickson RG. Nerve fibers in human myocardial scars. Hum Pathol. 1991;22:138–46.

    Article  CAS  PubMed  Google Scholar 

  45. Thompson GW, Horackova M, Armour JA. Sensitivity of canine intrinsic cardiac neurons to h2o2 and hydroxyl radical. Am J Physiol. 1998;275:H1434–40.

    CAS  PubMed  Google Scholar 

  46. Huang MH, Horackova M, Negoescu RM, Wolf S, Armour JA. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Cardiovasc Res. 1996;32:503–15.

    Article  CAS  PubMed  Google Scholar 

  47. Huang HS, Pan HL, Stahl GL, Longhurst JC. Ischemia- and reperfusion-sensitive cardiac sympathetic afferents: Influence of h2o2 and hydroxyl radicals. Am J Physiol. 1995;269:H888–901.

    CAS  PubMed  Google Scholar 

  48. Thames MD, Kinugawa T, Dibner-Dunlap ME. Reflex sympathoexcitation by cardiac sympathetic afferents during myocardial ischemia. Role of adenosine. Circulation. 1993;87:1698–704.

    Article  CAS  PubMed  Google Scholar 

  49. Ajijola OA, Wisco JJ, Lambert HW, Mahajan A, Stark E, Fishbein MC, Shivkumar K. Extracardiac neural remodeling in humans with cardiomyopathy. Circ Arrhythm Electrophysiol. 2012;5:1010–116.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ajijola OA, Yagishita D, Reddy NK, Yamakawa K, Vaseghi M, Downs AM, Hoover DB, Ardell JL, Shivkumar K. Remodeling of stellate ganglion neurons following spatially targeted myocardial infarction: neuropeptide and morphologic changes. Heart Rhythm. 2015;12(5):1027–35.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kanazawa H, Ieda M, Kimura K, Arai T, Kawaguchi-Manabe H, Matsuhashi T, Endo J, Sano M, Kawakami T, Kimura T, Monkawa T, Hayashi M, Iwanami A, Okano H, Okada Y, Ishibashi-Ueda H, Ogawa S, Fukuda K. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. J Clin Invest. 2010;120:408–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Han S, Kobayashi K, Joung B, Piccirillo G, Maruyama M, Vinters HV, March K, Lin SF, Shen C, Fishbein MC, Chen PS, Chen LS. Electroanatomic remodeling of the left stellate ganglion after myocardial infarction. J Am Coll Cardiol. 2012;59:954–61.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhou S, Jung BC, Tan AY, Trang VQ, Gholmieh G, Han SW, Lin SF, Fishbein MC, Chen PS, Chen LS. Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death. Heart Rhythm. 2008;5:131–9.

    Article  PubMed  Google Scholar 

  54. Woo MA, Macey PM, Keens PT, Kumar R, Fonarow GC, Hamilton MA, Harper RM. Functional abnormalities in brain areas that mediate autonomic nervous system control in advanced heart failure. J Card Fail. 2005;11:437–46.

    Article  PubMed  Google Scholar 

  55. Ajijola OA, Shivkumar K. Neural remodeling and myocardial infarction: the stellate ganglion as a double agent. J Am Coll Cardiol. 2012;59:962–4.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vaseghi M, Ajijola O, Mahajan A, Shivkumar K. Sympathetic innervation, denervation, and cardiac arrhythmias. In: Zipes D, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Philadelphia: Saunders Elsevier; 2014. p. 409–18.

    Chapter  Google Scholar 

  57. Bourke T, Vaseghi M, Michowitz Y, Sankhla V, Shah M, Swapna N, Boyle NG, Mahajan A, Narasimhan C, Lokhandwala Y, Shivkumar K. Neuraxial modulation for refractory ventricular arrhythmias: value of thoracic epidural anesthesia and surgical left cardiac sympathetic denervation. Circulation. 2010;121:2255–62.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hopkins DA, Macdonald SE, Murphy DA, Armour JA. Pathology of intrinsic cardiac neurons from ischemic human hearts. Anat Rec. 2000;259:424–36.

    Article  CAS  PubMed  Google Scholar 

  59. Jv J. Cellular pathobiology. Metabolic and storage diseases. In: Electron microscopy in human medicine. New York: McGraw-Hill; 1978.

    Google Scholar 

  60. Lake B. Lysosomal and peroxisomal disorders. In: Adams J, Duchen L, editors. Greenfield’s neuropathology. New York: Oxford University Press; 1992. p. 709–810.

    Google Scholar 

  61. Hardwick JC, Ryan SE, Beaumont E, Ardell JL, Southerland EM. Dynamic remodeling of the guinea pig intrinsic cardiac plexus induced by chronic myocardial infarction. Auton Neurosci. 2014;181:4–12.

    Article  CAS  PubMed  Google Scholar 

  62. Ajijola OA, Yagishita D, Patel KJ, Vaseghi M, Zhou W, Yamakawa K, So E, Lux RL, Mahajan A, Shivkumar K. Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context. Am J Physiol Heart Circ Physiol. 2013;305:H1031–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wickramasinghe SR, Patel VV. Local innervation and atrial fibrillation. Circulation. 2013;128:1566–75.

    Article  PubMed  Google Scholar 

  64. Coumel P, Attuel P, Lavallée J, Flammang D, Leclercq JF, Slama R. [The atrial arrhythmia syndrome of vagal origin]. Arch Mal Coeur Vaiss. 1978;71:645–56.

    CAS  PubMed  Google Scholar 

  65. Schauerte P, Scherlag BJ, Patterson E, Scherlag MA, Matsudaria K, Nakagawa H, Lazzara R, Jackman WM. Focal atrial fibrillation: experimental evidence for a pathophysiologic role of the autonomic nervous system. J Cardiovasc Electrophysiol. 2001;12:592–9.

    Article  CAS  PubMed  Google Scholar 

  66. Shivkumar K, Buch E, Boyle NG. Nonpharmacologic management of atrial fibrillation: role of the pulmonary veins and posterior left atrium. Heart Rhythm. 2009;6:S5–11.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Arora R. Recent insights into the role of the autonomic nervous system in the creation of substrate for atrial fibrillation: implications for therapies targeting the atrial autonomic nervous system. Circ Arrhythm Electrophysiol. 2012;5:850–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ng J, Villuendas R, Cokic I, Schliamser JE, Gordon D, Koduri H, Benefield B, Simon J, Murthy SN, Lomasney JW, Wasserstrom JA, Goldberger JJ, Aistrup GL, Arora R. Autonomic remodeling in the left atrium and pulmonary veins in heart failure: creation of a dynamic substrate for atrial fibrillation. Circ Arrhythm Electrophysiol. 2011;4:388–96.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Katritsis DG, Giazitzoglou E, Zografos T, Pokushalov E, Po SS, Camm AJ. Rapid pulmonary vein isolation combined with autonomic ganglia modification: a randomized study. Heart Rhythm. 2011;8:672–8.

    Article  PubMed  Google Scholar 

  70. Nakagawa H, Scherlag BJ, Patterson E, Ikeda A, Lockwood D, Jackman WM. Pathophysiologic basis of autonomic ganglionated plexus ablation in patients with atrial fibrillation. Heart Rhythm. 2009;6:S26–34.

    Article  PubMed  Google Scholar 

  71. Leiria TL, Glavinovic T, Armour JA, Cardinal R, de Lima GG, Kus T. Longterm effects of cardiac mediastinal nerve cryoablation on neural inducibility of atrial fibrillation in canines. Auton Neurosci. 2011;161:68–74.

    Article  PubMed  Google Scholar 

  72. He B, Lu Z, He W, Wu L, Cui B, Hu X, Yu L, Huang C, Jiang H. Effects of ganglionated plexi ablation on ventricular electrophysiological properties in normal hearts and after acute myocardial ischemia. Int J Cardiol. 2013;168:86–93.

    Article  PubMed  Google Scholar 

  73. Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. 2005;29:493–500.

    Article  PubMed  Google Scholar 

  74. Ikramuddin S, Blackstone RP, Brancatisano A, Toouli J, Shah SN, Wolfe BM, Fujioka K, Maher JW, Swain J, Que FG, Morton JM, Leslie DB, Brancatisano R, Kow L, O’Rourke RW, Deveney C, Takata M, Miller CJ, Knudson MB, Tweden KS, Shikora SA, Sarr MG, Billington CJ. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the recharge randomized clinical trial. JAMA. 2014;312:915–22.

    Article  CAS  PubMed  Google Scholar 

  75. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004;109:120–4.

    Article  PubMed  Google Scholar 

  76. Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR, Mazgalev TN. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail. 2009;2:692–9.

    Article  CAS  PubMed  Google Scholar 

  77. De Ferrari GM, Crijns HJ, Borggrefe M, Milasinovic G, Smid J, Zabel M, Gavazzi A, Sanzo A, Dennert R, Kuschyk J, Raspopovic S, Klein H, Swedberg K, Schwartz PJ, Investigators CMT. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32:847–55.

    Article  PubMed  Google Scholar 

  78. Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, Klein H, Stolen C, Meyer S, Stein KM, Ramuzat A, Schubert B, Daum D, Neuzil P, Botman C, Castel MA, D’Onofrio A, Solomon SD, Wold N, Ruble SB. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the neural cardiac therapy for heart failure (nectar-hf) randomized controlled trial. Eur Heart J. 2015;36:425–33.

    Article  PubMed  Google Scholar 

  79. Huang J, Qian J, Yao W, Wang N, Zhang Z, Cao C, Song B. Vagus nerve stimulation reverses ventricular electrophysiological changes induced by hypersympathetic nerve activity. Exp Physiol. 2015;100:239–48.

    Article  PubMed  Google Scholar 

  80. Lopshire JC, Zhou X, Dusa C, Ueyama T, Rosenberger J, Courtney N, Ujhelyi M, Mullen T, Das M, Zipes DP. Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation. 2009;120:286–94.

    Article  PubMed  Google Scholar 

  81. Issa ZF, Zhou X, Ujhelyi MR, Rosenberger J, Bhakta D, Groh WJ, Miller JM, Zipes DP. Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model. Circulation. 2005;111:3217–20.

    Article  PubMed  Google Scholar 

  82. Southerland EM, Milhorn DM, Foreman RD, Linderoth B, DeJongste MJ, Armour JA, Subramanian V, Singh M, Singh K, Ardell JL. Preemptive, but not reactive, spinal cord stimulation mitigates transient ischemia-induced myocardial infarction via cardiac adrenergic neurons. Am J Physiol Heart Circ Physiol. 2007;292:H311–7.

    Article  CAS  PubMed  Google Scholar 

  83. Liu Y, Yue WS, Liao SY, Zhang Y, Au KW, Shuto C, Hata C, Park E, Chen P, Siu CW, Tse HF. Thoracic spinal cord stimulation improves cardiac contractile function and myocardial oxygen consumption in a porcine model of ischemic heart failure. J Cardiovasc Electrophysiol. 2012;23:534–40.

    Article  PubMed  Google Scholar 

  84. Odenstedt J, Linderoth B, Bergfeldt L, Ekre O, Grip L, Mannheimer C, Andréll P. Spinal cord stimulation effects on myocardial ischemia, infarct size, ventricular arrhythmia, and noninvasive electrophysiology in a porcine ischemia-reperfusion model. Heart Rhythm. 2011;8:892–8.

    Article  PubMed  Google Scholar 

  85. Zanchetti AS. Neural regulation of renin release: experimental evidence and clinical implications in arterial hypertension. Circulation. 1977;56:691–8.

    Article  CAS  PubMed  Google Scholar 

  86. Bell-Reuss E, Trevino DL, Gottschalk CW. Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest. 1976;57:1104–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res. 1998;40:352–63.

    Article  CAS  PubMed  Google Scholar 

  88. Bradfield JS, Vaseghi M, Shivkumar K. Renal denervation for refractory ventricular arrhythmias. Trends Cardiovasc Med. 2014;24:206–13.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL. Investigators SH-. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401.

    Article  CAS  PubMed  Google Scholar 

  90. Atherton DS, Deep NL, Mendelsohn FO. Micro-anatomy of the renal sympathetic nervous system: a human postmortem histologic study. Clin Anat. 2012;25:628–33.

    Article  PubMed  Google Scholar 

  91. Kammerling JJ, Green FJ, Watanabe AM, Inoue H, Barber MJ, Henry DP, Zipes DP. Denervation supersensitivity of refractoriness in noninfarcted areas apical to transmural myocardial infarction. Circulation. 1987;76:383–93.

    Article  CAS  PubMed  Google Scholar 

  92. Linz D, Wirth K, Ukena C, Mahfoud F, Pöss J, Linz B, Böhm M, Neuberger HR. Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs. Heart Rhythm. 2013;10:1525–30.

    Article  PubMed  Google Scholar 

  93. Ukena C, Bauer A, Mahfoud F, Schreieck J, Neuberger HR, Eick C, Sobotka PA, Gawaz M, Böhm M. Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol. 2012;101:63–7.

    Article  PubMed  Google Scholar 

  94. Tsioufis C, Papademetriou V, Tsiachris D, Dimitriadis K, Kasiakogias A, Kordalis A, Antonakis V, Kefala A, Thomopoulos C, Kallikazaros I, Lau EO, Stefanadis C. Drug-resistant hypertensive patients responding to multielectrode renal denervation exhibit improved heart rate dynamics and reduced arrhythmia burden. J Hum Hypertens. 2014;28:587–93.

    Article  CAS  PubMed  Google Scholar 

  95. Remo BF, Preminger M, Bradfield J, Mittal S, Boyle N, Gupta A, Shivkumar K, Steinberg JS, Dickfeld T. Safety and efficacy of renal denervation as a novel treatment of ventricular tachycardia storm in patients with cardiomyopathy. Heart Rhythm. 2014;11:541–6.

    Article  PubMed  Google Scholar 

  96. Hoffmann BA, Steven D, Willems S, Sydow K. Renal sympathetic denervation as an adjunct to catheter ablation for the treatment of ventricular electrical storm in the setting of acute myocardial infarction. J Cardiovasc Electrophysiol. 2013;24:E21.

    Article  PubMed  Google Scholar 

  97. Wang HJ, Wang W, Cornish KG, Rozanski GJ, Zucker IH. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension. 2014;64:745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Armour JA, Kember G. Cardiac sensory neurons. In: Armour JA, Ardell JL, editors. Basic and clinical neurocardiology. New York:Oxford University Press; 2004. p. 79–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyanam Shivkumar MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rajendran, P.S. et al. (2017). Neural Control of Cardiac Function in Health and Disease. In: Dilsizian, V., Narula, J. (eds) Atlas of Cardiac Innervation. Springer, Cham. https://doi.org/10.1007/978-3-319-45800-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45800-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45798-7

  • Online ISBN: 978-3-319-45800-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics