Skip to main content

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

  • 1162 Accesses

Abstract

Bacteriophage (phage) therapy, or the therapeutic use of phage for the treatment of bacterial diseases, is a classical approach that was originally disregarded due to inconsistent results and with the advent of antibiotic drugs. However, with a greater understanding of phage biology and the pressing need for new and innovative antimicrobial strategies to challenge the ever-increasing prevalence of multidrug-resistant bacterial pathogens, phage therapy is seen to have great potential for reintroduction as antimicrobial strategy, although not without many limitations. In this chapter, by pointing out the limitations of native bacteriophage (phage) therapy, engineered phage-based bactericidal delivery vehicles will be introduced as a treatment approach for the biocontrol of a variety of important pathogens. Such an efficient approach would be suitable for concurrent treatment with standard antibiotics and possibly become a suitable replacement. The bacterial infections to be considered will include those due to: Escherichia coli, Staphylococcus aureus, Chlamydia trachomatis, Pseudomonas aeruginosa, and Helicobacter pylori. The pathogens will be described along with the efficiency of the phage-based methods to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alisky, J., Iczkowski, K., Rapoport, A., & Troitsky, N. (1998). Bacteriophages show promise as antimicrobial agents. The Journal of Infection, 36(1), 5–15.

    Article  CAS  Google Scholar 

  • Amati, P. (1961). Abortive Infection of Pseudomonas aeruginosa and Serratia marcescens with Coliphage P1. Journal of Bacteriology, 83(2), 433–434.

    Google Scholar 

  • Bar, H., Yacoby, I., & Benhar, I. (2008). Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnology, 8(37).

    Google Scholar 

  • Bébéar, C., & de Barbeyrac, B. (2009). Genital Chlamydia Trachomatis Infections. Clinical microbiology and infection: The official publication of the European society of clinical microbiology and infectious diseases, 15, 4–10.

    Article  Google Scholar 

  • Bhattarai, S. R., Yoo, S. Y., Lee, S. W., & Dean, D. (2012). Engineered phage-based therapeutic materials inhibit Chlamydia Trachomatis intracellular infection. Biomaterials, 33(20), 5166–5174 (Elsevier Ltd).

    Google Scholar 

  • Brüssow, H. (2005). Phage therapy: The Escherichia Coli experience. Microbiology (Reading, England), 151(Pt 7), 2133–2140. doi:10.1099/mic.0.27849-0

    Google Scholar 

  • Brüssow, H. (2012). What is needed for phage therapy to become a reality in Western medicine? Virology, 434, 138–142.

    Google Scholar 

  • Cao, J., Sun, Yi Qian, Berglindh, T., MellgÃ¥rd, B., Li, Z Qi, MÃ¥rdh, B., et al. (2000). Helicobacter pylori-antigen-binding fragments expressed on the filamentous M13 phage prevent bacterial growth. Biochimica et Biophysica Acta - General Subjects, 1474, 107–113.

    Article  CAS  Google Scholar 

  • Citorik, R. J., Mimee, M., & Lu, T. K. (2014). Bacteriophage-based synthetic biology for the study of infectious diseases. Current Opinion in Microbiology, 19C, 59–69 (Elsevier Ltd).

    Google Scholar 

  • Clokie, M. R. J., et al. (2011). Phages in nature. Bacteriophage, 1(1), 31–45.

    Google Scholar 

  • Coates, A. R. M., & Hu, Y. (2007). Novel Approaches to developing new antibiotics for bacterial infections. British Journal of Pharmacology, 152(8), 1147–1154.

    Article  CAS  Google Scholar 

  • Dean, D., Suchland, R. J., & Stamm, W. E. (2000). Evidence for long-term cervical persistence of Chlamydia Trachomatis by omp1 Genotyping. The Journal of Infectious Diseases, 182, 909–916.

    Article  CAS  Google Scholar 

  • Deveau, H., Garneau, J. E., & Moineau, S. (2010). CRISPR/Cas system and its role in phage-bacteria interactions. Annual Review of Microbiology, 64(January), 475–493.

    Article  CAS  Google Scholar 

  • Dzuliashvili, M, K., Gabitashvili, A., Golidjashvili, Hoile, N., & Gachechiladze, K. (2007). Study of therapeutic potential of the experimental pseudomonas bacteriophage preparation. Georgian Medical News, 6(6).

    Google Scholar 

  • Echols, H. (1981). SOS functions, cancer and inducible evolution. Cell, 25(1), 1–2.

    Article  CAS  Google Scholar 

  • Edgar, R., Friedman, N., Molshanski-Mor, S., & Qimron, U. (2012). Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Applied and Environmental Microbiology, 78(3), 744–751.

    Article  CAS  Google Scholar 

  • Georgiev, V. S. (2009). National Institute of Allergy and infectious diseases, NIH: Volume 2: Impact on global health. Springer Science & Business Media.

    Google Scholar 

  • Goodridge, L. D. (2010). Designing phage therapeutics. Current Pharmaceutical Biotechnology, 11(1), 15–27.

    Article  CAS  Google Scholar 

  • Griffin, P. M., & Tauxe, R. V. (1991). The epidemiology of infections caused by Escherichia Coli O157:H7, other enterohemorrhagic E. Coli, and the associated hemolytic uremic syndrome. Epidemiologic Reviews, 13, 60–98.

    CAS  Google Scholar 

  • Hagens, S., & Blasi, U. (2003). Genetically modified filamentous phage as bactericidal agents: A pilot study. Letters in Applied Microbiology, 37(4), 318–323.

    Article  CAS  Google Scholar 

  • Hagens, S., Von Ahsen, U., & Von Gabain, A. (2004). Therapy of experimental Pseudomonas infections with a nonreplicating genetically modified phage. Antimicrobial Agents and Chemotherapy, 48(10), 3817–3822.

    Article  CAS  Google Scholar 

  • Hanlon, G. W. (2007). Bacteriophages: An appraisal of their role in the treatment of bacterial infections. International Journal of Antimicrobial Agents, 30(2), 118–128.

    Article  CAS  Google Scholar 

  • Hatoum-Aslan, A., & Marraffini, L. A. (2014). Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens. Current Opinion in Microbiology, 17, 82–90 (Elsevier Ltd).

    Google Scholar 

  • Hilf, M., Yu, V. L., Sharp, J., Zuravleff, J. J., Korvick, J. A., & Muder, R. R. (1989). Antibiotic therapy for Pseudomonas aeruginosa bacteremia: Outcome correlations in a prospective study of 200 patients. The American Journal of Medicine, 87(5), 540–546.

    Article  CAS  Google Scholar 

  • Hiramatsu, K., Cui, L., Kuroda, M., & Ito, T. (2001). The emergence and evolution of methicillin-resistant staphylococcus aureus. Trends in Microbiology, 9(10), 486–493.

    Article  CAS  Google Scholar 

  • Johnson, J. R., Johnston, B., Clabots, C., Kuskowski, M. A., & Castanheira, M. (2010). Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. Coli infections in the United States. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 51(3), 286–94.

    Google Scholar 

  • Karlowsky, J. A., et al. (2002). Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrobial agents and chemotherapy, 46(8), 2540–2545.

    Google Scholar 

  • Klevens, R. Monina, et al. (2007). Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA, 298(15), 1763–1771.

    Article  CAS  Google Scholar 

  • Kutateladze, M., & Adamia, R. (2010). Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends in Biotechnology, 28(12), 591–595 (Elsevier Ltd).

    Google Scholar 

  • Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., et al. (2010). Phage therapy in clinical practice: Treatment of human infections. Current Pharmaceutical Biotechnology, 11(1), 69–86.

    Article  CAS  Google Scholar 

  • Labrie, S. J., Samson, J. E., & Moineau, S. (2010). Bacteriophage resistance mechanisms. Nature Reviews Microbiology, 8(5), 317–327.

    Article  CAS  Google Scholar 

  • Lu, T. K., & Collins, J. J. (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4629–4634.

    Article  CAS  Google Scholar 

  • Lu, T. K., & Koeris, M. S. (2011). The next generation of bacteriophage therapy. Current Opinion in Microbiology, 14(5), 524–531 (Elsevier Ltd).

    Google Scholar 

  • Matsuda, T, Freeman, T. A., Hilbert, D. W., Duff, M., Fuortes, M., Stapleton, P. P., & Daly, J. M., et al. (2005). Lysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis model. Surgery, 137(6), 639–46.

    Google Scholar 

  • Matsuzaki, S., Rashel, M., Uchiyama, J., Sakurai, S., Ujihara, T., Kuroda, M., et al. (2005). Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. Journal of Infection and Chemotherapy: Official Journal of the Japan Society of Chemotherapy, 11(5), 211–219.

    Article  Google Scholar 

  • Merril, C. R., Scholl, D., & Adhya, S. L. (2003) The prospect for bacteriophage therapy in Western medicine. Nature Reviews Drug Discovery, 2, 489–497.

    Google Scholar 

  • Nataro, J. P., & Kaper, J. B. (1998). Diarrheagenic escherichia coli. Clinical Microbiology Reviews, 11(1), 142–201.

    CAS  Google Scholar 

  • Paul, V. D., Sundarrajan, S., Rajagopalan, S. S., Hariharan, S., Kempashanaiah, N., Padmanabhan, S., & Sriram, B., et al. (2011). Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection. BMC Microbiology, 11(1), 195 (BioMed Central Ltd).

    Google Scholar 

  • Petty, N. K., Evans, T. J., Fineran, P. C., & Salmond, G. P. C. (2007). Biotechnological exploitation of bacteriophage research. Trends in Biotechnology, 25(1), 7–15.

    Article  CAS  Google Scholar 

  • Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M., & Swerdlow, D. L. (2005). Epidemiology of Escherichia Coli O157:H7 outbreaks, United States, 1982–2002. Emerging Infectious Diseases, 11(4).

    Google Scholar 

  • Samson, J. E, Magadán, A. H., Sabri, M., & Moineau, S. (2013). Revenge of the phages: Defeating bacterial defences. Nature Reviews. Microbiology, 11(10). Nature Publishing Group: 675–87.

    Google Scholar 

  • Smith, H. W., & Huggins, M. B. (1982). Successful treatment of experimental Escherchia coli infections in mice using phage: Its general superiority over antibiotics. Journal of General Microbiology, 128, 307–318.

    CAS  Google Scholar 

  • Smith, R., & Coast, J. (2013). The true cost of antimicrobial resistance. Bmj-British Medical Journal, 346(March), 5.

    Google Scholar 

  • Somani, J, Bhullar, V. A., Workowski, K. A., Farshy, C. E., & Black, C. M. (2000). Multiple drug-resistant Chlamydia trachomatis associated with clinical treatment failure. The Journal of Infectious Diseases 181, 1421–27.

    Google Scholar 

  • Sulakvelidze, A., Alavidze, Z., Glenn, J., & Morris, J. G. (2001). Bacteriophage therapy. Antimicrobial Agents and Chemotherapy, 45(3), 649–59.

    Google Scholar 

  • Vaks, L., & Benhar, I. (2011). In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines. Journal of Nanobiotechnology, 9(1), 58 (BioMed Central Ltd).

    Google Scholar 

  • Westwater, C., Kasman, L. M., Schofield, D. A., Werner, P. A., Dolan, J. W., Schmidt, M. G., et al. (2003). Use of genetically engineered phage to deliver antimicrobial agents to bacteria: An alternative therapy for treatment of bacterial infections. Antimicrobial Agents and Chemotherapy, 47(4), 1301–1307.

    Article  CAS  Google Scholar 

  • Yacoby, I., & Benhar, I. (2008). Targeted filamentous bacteriophages as therapeutic agents. Expert opinion on drug delivery, 5(September), 321–329.

    Article  CAS  Google Scholar 

  • Yacoby, I., Shamis, M., Bar, H., Shabat, D., & Benhar, I. (2006). Targeting antibacterial agents by using drug-carrying filamentous bacteriophages. Antimicrobial Agents and Chemotherapy, 50(6), 2087–2097.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Nicastro .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Nicastro, J., Khazaei, Z., Blay, J. (2016). Phage for Biocontrol. In: Bacteriophage Applications - Historical Perspective and Future Potential. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-45791-8_2

Download citation

Publish with us

Policies and ethics