Skip to main content

Individual-Based Approach to Radiation Risk Assessment

  • Chapter
  • First Online:
  • 477 Accesses

Abstract

Chapter 6 is devoted to the development and thorough study of the biologically motivated mathematical models, which describe the dynamics of the radiation-induced mortality in homogeneous and nonhomogeneous (in radiosensitivity) populations of mammals. These models relate the statistical biometric functions with statistical and dynamic characteristics of the critical systems in specimens composing the populations. In the model of mortality for nonhomogeneous populations two types of distributions, normal and log-normal, of their specimens in radiosensitivity index of the critical system cells are considered. It is shown that the model of the homogeneous population mortality quantitatively reproduces the mortality rate of mammals (mice) after exposure to high doses and dose rate of acute and chronic irradiation when the small intestine is a critical system. This model also describes quantitatively the mortality of mice chronically irradiated at low dose rates when the hematopoietic system, namely, thrombocytopoiesis is the critical one. It is revealed that the model of mortality dynamics for nonhomogeneous population, by the same irradiation scenario, predicts higher mortality rate and lower survival that could have been predicted proceeding from the averaged values of the radiosensitivity index of cells mentioned above. The levels of doses and dose rates of acute and chronic exposures presenting a certain danger for nonhomogeneous mammalian populations decrease with increasing the variance of the corresponding distributions. The developed models outline new pathways in developing the methods of radiation risk assessment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. National Council on Radiation Protection and Measurements. Guidance on Radiation Received in Space Activity (NCRP report no. 98). NCRP, Bethesda, MD, 1989.

    Google Scholar 

  2. Schimmerling W., Cucinotta F.A., Wilson J.W. Radiation risk and human space exploration. Advances in Space Research, v. 31(1), pp. 27–34, 2003.

    Google Scholar 

  3. Simonsen L.C., Wilson J.W., Kim, M.H., Cucinotta F.A. Radiation exposure for human Mars exploration. Health Physics, v. 79(5), pp. 515–525, 2000.

    Google Scholar 

  4. Blakely E.A. Biological effects of cosmic radiation: Deterministic and stochastic. Health Physics, v. 79(5), pp. 495–506, 2000.

    Google Scholar 

  5. Hagen U., Harder D., Jung H., Streffer C. (Eds.). Radiation research 1895–1995. Congress Proceedings. Volume 2: Congress Lectures. Wurzburg: Universitatsdruckerei H. Sturtz AG, pp. 1–1210, 1995.

    Google Scholar 

  6. Gottlober P., Steinert M., Weiss M., Bebeshko V., Belyi D., Nadejina N., Stefani F.H., Wagemaker G., Fliedner T.M., Peter R.U. The outcome of local radiation injuries: 14 years of follow-up after the Chernobyl accident. Radiation Research, v. 155(3), pp. 409–416, 2001.

    Google Scholar 

  7. Ivanov V.K., Tzyb A.F. Medical radiobiological effects of the Chernobyl catastrophe on the population of Russia: Estimation of radiation risks. Moscow: Meditsina, 2002 (Russian).

    Google Scholar 

  8. Akleev A.V., Kisselyov M.F. (Eds.). Medical–biological and ecological impacts of radioactive contamination of the Techa river. Moscow: “Medbioextrem,” 2001 (Russian).

    Google Scholar 

  9. Barsukov O.A., Barsukov K.A. Radiation Ecology. Moscow: Scientific Word, 2003.

    Google Scholar 

  10. Canu I.G., Ellis E.D., Tirmarche M. Cancer risk in nuclear workers occupationally exposed to uranium — Emphasis on internal exposure. Health Physics, v. 94(1), pp. 1–17, 2008.

    Google Scholar 

  11. ICRP. Radiation protection: Recommendations of the International Commission on Radiological Protection, ICRP Publication 60, Oxford: Pergamon Press, 1991.

    Google Scholar 

  12. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103, Elsevier, 2008.

    Google Scholar 

  13. Smirnova O.A. The mathematical model of mortality dynamics for irradiated mammals which is based on the model of hematopoiesis. Radiobiologiya, v. 27, p. 713. Dep. in VINITI N 2443–1387, 06.07.87, 1987 (Russian).

    Google Scholar 

  14. Smirnova O.A. Mathematical modelling of the death rate dynamics in mammals with intestinal form of radiation sickness. Radiobiologiya, v. 30, pp. 814–820, 1990 (Russian).

    Google Scholar 

  15. Kovalev E.E., Smirnova O.A. Life-span of irradiated mammals. Mathematical modelling. Acta Astronautica, v. 32, pp. 649–652, 1994.

    Google Scholar 

  16. Kovalev E.E., Smirnova O.A. Radiation risk assessment based on the concept of individual variability of radiosensitivity. Radiation research 1895–1995. Congress Proceedings. Vol. 1. U. Hagen, H. Jung, C. Streffer (Eds.). Tenth International Congress of Radiation Research, Wurzburg, Germany, August 27 – September 1, 1995. Wurzburg: Universitatsdruckerei H. Strtz AG, p. 335, 1995.

    Google Scholar 

  17. Kovalev E.E., Smirnova O.A. Estimation of radiation risk based on the concept of individual variability of radiosensitivity. AFRRI Contract Report 96-1. Bethesda, MD: Armed Forces Radiobiology Research Institute, 1996.

    Google Scholar 

  18. Kovalev E.E., Smirnova O.A. New approach to radiation risk assessment. 12th Man in Space Symposium: The Future of Humans in Space, Washington, DC, June 8–13, 1997. Abstract Volume. Houston, TX: USRA, p. 324, 1997.

    Google Scholar 

  19. Smirnova O.A. Mathematical modeling of the mortality dynamics of mammals exposed to acute and chronic irradiation. Mathematics, Computers, Education. Moscow: Progress-Tradiciya, v. 5, pp. 299–303, 1998 (Russian).

    Google Scholar 

  20. Smirnova O.A. Mathematical modeling of mortality dynamics of mammalian population exposed to radiation. Mathematical Biosciences, v. 167, pp. 19–30, 2000.

    Google Scholar 

  21. Smirnova O.A. Simulation of mortality dynamics for mammalian populations exposed to radiation. The 4th International EUROSIM Congress “Shaping Future with Simulation,” Delft, the Netherlands, June 26–29, 2001. Abstracts, Delft: TUDelft, pp. 109–110, 2001.

    Google Scholar 

  22. Smirnova O.A. Comparative risk assessment for homogeneous and nonhomogeneous mammalian populations exposed to low level radiation. NATO Advanced Research Workshop “Comparative Risk Assessment and Environmental Decision Making,” Rome, Anzio, Italy, October 13–16, 2002. Book of Abstracts, p. 35, 2002.

    Google Scholar 

  23. Smirnova O.A. Mathematical model for assessment of radiation risk on long space mission. Advances in Space Research, v. 30(4), pp. 1005–1010, 2002.

    Google Scholar 

  24. Sakovich V.A., Smirnova O.A. Modeling radiation effects on life span of mammals. Physics Particles and Nuclei, v. 34(6), pp. 743–766, 2003.

    Google Scholar 

  25. Smirnova O.A. Comparative risk assessment for homogeneous and nonhomogeneous mammalian populations exposed to low level radiation. In: I. Linkov and A.B. Ramadan (Eds.), Comparative Risk Assessment and Environmental Decision Making. NATO Science Series. IV. Earth and Environmental Sciences, Vol. 38. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 385–392, 2004.

    Google Scholar 

  26. Smirnova O.A. Simulation of mortality dynamics for populations of mammals (mice) exposed to radiation. In: Simulation Modelling Practice and Theory: Advances in Modelling and Simulation in Biology and Medicine. Y. Hamam and F. Rocaries (Eds.). v. 12(2), pp. 171–182, 2004.

    Google Scholar 

  27. Smirnova O.A. Radiation and Organism of Mammals: Modeling Approach. Moscow-Izhevsk: Scientific-Publishing Centre “Regular and Chaotic Dynamics,” Institute of Computer Science, 2006 (Russian).

    Google Scholar 

  28. United Nations Scientific Committee on the Effects of Atomic Radiation. Ionizing radiation: Sources and biological effects. Report to the General Assembly, 1982. New York: United Nations Organization, Volume II, 1982.

    Google Scholar 

  29. Cox D.R., Oakes D. Analysis of Survival Data. London: Chapman and Hall, 1984.

    Google Scholar 

  30. Boleslawski L. Cohort Tables of Life Span. Moscow: Statistika, pp. 12–38, 1977 (Russian).

    Google Scholar 

  31. Sacher G.A. On the statistical nature of mortality with a special reference to chronic radiation mortality. Radiology, v. 67(2), pp. 250–258, 1955.

    Google Scholar 

  32. Sacher G.A., Trucco E. The stochastic theory of mortality. Annals of the New York Academy of Sciences, v. 96, pp. 985–1007, 1962.

    Google Scholar 

  33. Korn G.A., Korn T.M. Mathematical Handbook. London: McGraw-Hill Book Company, 1968.

    Google Scholar 

  34. Bond V.P., Fliendner T.M., Archambeau J.O. Mammalian Radiation Lethality: A Disturbance in Cellular Kinetics. New York: Academic Press, 1965.

    Google Scholar 

  35. Kalina I., Praslichka M. Changes in haemopoiesis and survival of continuously irradiated mice. Radiobiologiya, v. 17, pp. 849–853, 1977 (Russian).

    Google Scholar 

  36. Matsuzawa T., Wilson R. The intestinal mucosa of germfree mice after whole-body X-irradiation with 3 kiloroentgens. Radiation Research, v. 25(1), pp. 15–24, 1965.

    Google Scholar 

  37. Iberall A.S. Quantitative modeling of the physiological factors in radiation lethality. Annals of the New York Academy of Sciences, v. 147, Art. I, pp. 1–81, 1967.

    Google Scholar 

  38. Lesher S. Compensatory reaction in intestinal crypt cells after 300 roentgens of Cobalt-60 gamma irradiation. Radiation Research, v. 32(3), pp. 510–519, 1967.

    Google Scholar 

  39. Konoplyannikova O.A., Konoplyannikov A.G. Age-related changes in radiosensitivity of animals and critical cell systems: Survival of stem cells of small intestine epithelium, and 4-5-day death of mice of different age after irradiation. Radiobiologiya, v. 24, pp. 249–252, 1984 (Russian).

    Google Scholar 

  40. Potten C.S. Radiosensitivity and kinetics of target cells in relation to tissue responses as exemplified by the epidermis and the intestine. Radiation Research. Proceedings of the 8th International Congress of Radiation Research. Edinburgh, July 1987. London: Taylor Francis, v. 2, pp. 782–788, 1987.

    Google Scholar 

  41. Ivanov I.V. Initial reactivity of organism and radiation effects: Medical-prophylactic aspects of the problem. In: Scientific-Practical Manual. N.G. Darenskaya (Ed.). Moscow: RMAPO, 2005.

    Google Scholar 

  42. Arlett C.F., Cole J., Green M.H.L. Radiosensitive individuals in the population. In: Low Dose Radiation: Biological Bases of Risk Assessment. K.F. Baverstock and J.W. Stather (Eds.). London: Taylor and Francis, pp. 240–252, 1989.

    Google Scholar 

  43. Gentner N.E., Morrison D.P. Determination of the proportion of persons in the population-at-large who exhibit abnormal sensitivity to ionizing radiation. In: Low Dose Radiation: Biological Bases of Risk Assessment. K.F. Baverstock and J.W. Stather (Eds.). London: Taylor and Francis, pp. 259–268, 1989.

    Google Scholar 

  44. Eadie W.T., Drijard D., James F.E., Roos M., Sadoulet B. Statistical Methods in Experimental Physics. Amsterdam: North-Holland Publishing Company, 1971.

    Google Scholar 

  45. Report of the Task Group on Reference Man. ICRP Publication 23. Oxford: Pergamon Press, 1975.

    Google Scholar 

  46. Balakrishnan N., Chen W.W.S. Handbook of Tables for Order Statistics from Lognormal Distributions with Applications. Amsterdam: Kluwer, 1999.

    Google Scholar 

  47. Crow E.L., Shimizu K. (Eds.). Lognormal Distributions: Theory and Applications. New York: Marcel Dekker, 1988.

    Google Scholar 

  48. Kenney J.F., Keeping E.S. Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, p. 123, 1951.

    Google Scholar 

  49. Cox R., Haskingand G.P., Wilson J. Ataxia telangiectasia. Evaluation of radiosensitivity in cultured skin fibroblasts as a diagnostic test. Archives of Disease in Childhood, v. 53, pp. 386–390, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Smirnova, O.A. (2017). Individual-Based Approach to Radiation Risk Assessment. In: Environmental Radiation Effects on Mammals. Springer, Cham. https://doi.org/10.1007/978-3-319-45761-1_6

Download citation

Publish with us

Policies and ethics