Advertisement

The Time-Dependent Navier–Stokes Equations: Laminar Flows

  • Volker John
Chapter
  • 2.1k Downloads
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 51)

Abstract

The time-dependent Navier–Stokes equations ( 2.25) were derived in Chapter “The Navier–Stokes Equations as Model for Incompressible Flows” as a model for describing the behavior of incompressible fluids. From the point of view of numerical simulations, one has to distinguish between laminar and turbulent flows. It does not exist an exact definition of these terms. From the point of view of simulations, a flow is considered to be laminar, if on reasonable grids all flow structures can be represented or resolved. In this case, it is possible to simulate the flow with standard discretization techniques in space, like the Galerkin finite element method.

Keywords

Time-dependent Navier-Stokes Equations Laminar Flow Standard Discretization Techniques Reasonable Grid Galerkin Finite Element Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amann H (2000) On the strong solvability of the Navier-Stokes equations. J Math Fluid Mech 2:16–98MathSciNetCrossRefzbMATHGoogle Scholar
  2. Arndt D, Dallmann H, Lube G (2015) Local projection FEM stabilization for the time-dependent incompressible Navier-Stokes problem. Numer Methods Partial Differ Equ 31:1224–1250MathSciNetCrossRefzbMATHGoogle Scholar
  3. Ayuso B, García-Archilla B, Novo J (2005). The postprocessed mixed finite-element method for the Navier-Stokes equations. SIAM J Numer Anal 43:1091–1111MathSciNetCrossRefzbMATHGoogle Scholar
  4. Baker GA (1976) Galerkin approximations for the Navier-Stokes equations. Technical Report. Havard UniversityGoogle Scholar
  5. Bangerth W, Hartmann R, Kanschat G (2007) deal.II—a general-purpose object-oriented finite element library. ACM Trans Math Softw 33. Art. 24, 27Google Scholar
  6. Bause M (1997) Optimale Konvergenzraten für voll diskretisierte Navier-Stokes-Approximationen höherer Ordnung in Gebieten mit Lipschitz-Rand. PhD thesis, Univ.-GH Paderborn, FB Mathematik/ Informatik, Paderborn, pp 175Google Scholar
  7. Berrone S, Marro M (2009) Space-time adaptive simulations for unsteady Navier-Stokes problems. Comput Fluids 38:1132–1144MathSciNetCrossRefzbMATHGoogle Scholar
  8. Besier M, Wollner W (2012) On the pressure approximation in nonstationary incompressible flow simulations on dynamically varying spatial meshes. Int J Numer Methods Fluids 69:1045–1064MathSciNetCrossRefzbMATHGoogle Scholar
  9. Bowers AL, Le Borne S, Rebholz LG (2014) Error analysis and iterative solvers for Navier-Stokes projection methods with standard and sparse grad-div stabilization. Comput Methods Appl Mech Eng 275:1–19MathSciNetCrossRefzbMATHGoogle Scholar
  10. Brezzi F, Pitkäranta J (1984) On the stabilization of finite element approximations of the Stokes equations. In: Efficient solutions of elliptic systems (Kiel, 1984). Notes Numerical Fluid Mechanics, vol 10. Friedr. Vieweg, Braunschweig, pp 11–19Google Scholar
  11. Bristeau MO, Glowinski R, Périaux J (1987) Numerical methods for the Navier-Stokes equations. Applications to the simulation of compressible and incompressible viscous flows. In: Finite elements in physics (Lausanne, 1986). North-Holland, Amsterdam, pp 73–187Google Scholar
  12. Burman E, Fernández MA (2007) Continuous interior penalty finite element method for the time-dependent Navier-Stokes equations: space discretization and convergence. Numer Math 107:39–77MathSciNetCrossRefzbMATHGoogle Scholar
  13. Burman E, Fernández MA (2008) Galerkin finite element methods with symmetric pressure stabilization for the transient Stokes equations: stability and convergence analysis. SIAM J Numer Anal 47:409–439MathSciNetCrossRefzbMATHGoogle Scholar
  14. Burman E, Fernández MA (2011) Analysis of the PSPG method for the transient Stokes’ problem. Comput Methods Appl Mech Eng 200:2882–2890MathSciNetCrossRefzbMATHGoogle Scholar
  15. Caiazzo A, Iliescu T, John V, Schyschlowa S (2014) A numerical investigation of velocity-pressure reduced order models for incompressible flows. J Comput Phys 259:598–616MathSciNetCrossRefGoogle Scholar
  16. Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math Comp 22:745–762MathSciNetCrossRefzbMATHGoogle Scholar
  17. Codina R (2001a) Pressure stability in fractional step finite element methods for incompressible flows. J Comput Phys 170:112–140MathSciNetCrossRefzbMATHGoogle Scholar
  18. Codina R, Blasco J (1997) A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput Methods Appl Mech Eng 143:373–391MathSciNetCrossRefzbMATHGoogle Scholar
  19. Davis TA (2004) Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans Math Softw 30:196–199MathSciNetCrossRefzbMATHGoogle Scholar
  20. de Frutos J, García-Archilla B, Novo J (2008) The postprocessed mixed finite-element method for the Navier-Stokes equations: refined error bounds. SIAM J Numer Anal 46:201–230MathSciNetCrossRefzbMATHGoogle Scholar
  21. de Frutos J, García-Archilla B, John V, Novo J (2016a) Analysis of the grad-div stabilization for the time-dependent Navier–Stokes equations with inf-sup stable finite elements. (submitted)Google Scholar
  22. de Frutos J, García-Archilla B, John V, Novo J (2016b) Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements. J Sci Comput 66:991–1024MathSciNetCrossRefGoogle Scholar
  23. de Frutos J, John V, Novo J (2016c) Projection methods for incompressible flow problems with WENO finite difference schemes. J Comput Phys 309:368–386MathSciNetCrossRefGoogle Scholar
  24. Dohrmann CR, Bochev PB (2004) A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int J Numer Methods Fluids 46:183–201MathSciNetCrossRefzbMATHGoogle Scholar
  25. Emmrich E (2001) Analysis von Zeitdiskretisierungen des inkompressiblen Navier-Stokes-Problems. Diss. Cuvillier Verlag, Göttingen; TU Berlin, Fakultät II–Mathematik und Naturwissenschaften, Berlin, pp viii+206Google Scholar
  26. Emmrich E (2004a) Error of the two-step BDF for the incompressible Navier-Stokes problem. M2AN Math Model Numer Anal 38:757–764Google Scholar
  27. Emmrich E (2004b) Stability and convergence of the two-step BDF for the incompressible Navier-Stokes problem. Int J Nonlinear Sci Numer Simul 5:199–209MathSciNetCrossRefzbMATHGoogle Scholar
  28. Evans LC (2010) Partial differential equations. Graduate studies in mathematics, vol 19, 2nd edn. American Mathematical Society, Providence, RI, pp xxii+749Google Scholar
  29. Farwig R (2014) On regularity of weak solutions to the instationary Navier-Stokes system: a review on recent results. Ann Univ Ferrara Sez VII Sci Mat 60:91–122MathSciNetCrossRefzbMATHGoogle Scholar
  30. Fefferman C (2000) Existence and smoothness of the Navier-Stokes equations. http://www.claymath.org/sites/default/files/navierstokes.pdf
  31. Galdi GP (2000) An introduction to the Navier-Stokes initial-boundary value problem. In: Fundamental directions in mathematical fluid mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel, pp 1–70CrossRefGoogle Scholar
  32. Girault V, Raviart P-A (1979) Finite element approximation of the Navier-Stokes equations. Lecture notes in mathematics, vol 749. Springer, Berlin/New York, pp vii+200Google Scholar
  33. Guermond J-L (1999b) Un résultat de convergence d’ordre deux en temps pour l’approximation des équations de Navier-Stokes par une technique de projection incrémentale. M2AN Math Model Numer Anal 33:169–189Google Scholar
  34. Guermond J-L, Quartapelle L (1998) On stability and convergence of projection methods based on pressure Poisson equation. Int J Numer Methods Fluids 26:1039–1053MathSciNetCrossRefzbMATHGoogle Scholar
  35. Guermond J L, Shen J (2004) On the error estimates for the rotational pressure-correction projection methods. Math Comp 73:1719–1737 (electronic)Google Scholar
  36. Guermond JL, Minev P, Shen J (2006) An overview of projection methods for incompressible flows. Comput Methods Appl Mech Eng 195:6011–6045MathSciNetCrossRefzbMATHGoogle Scholar
  37. Hairer E, Wanner G (2010) Solving ordinary differential equations. II. Stiff and differential-algebraic problems. Springer series in computational mathematics, vol 14. Springer, Berlin, pp xvi+614. Second revised edition, paperbackGoogle Scholar
  38. Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations. I. Nonstiff problems. Springer series in computational mathematics, vol 8, 2nd edn. Springer, Berlin, pp xvi+528Google Scholar
  39. Heywood JG, Rannacher R (1982) Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J Numer Anal 19:275–311MathSciNetCrossRefzbMATHGoogle Scholar
  40. Heywood JG, Rannacher R (1988) Finite element approximation of the nonstationary Navier-Stokes problem. III. Smoothing property and higher order error estimates for spatial discretization. SIAM J Numer Anal 25:489–512MathSciNetCrossRefzbMATHGoogle Scholar
  41. Heywood JG, Rannacher R (1990) Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization. SIAM J Numer Anal 27:353–384MathSciNetCrossRefzbMATHGoogle Scholar
  42. Hopf E (1951) Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math Nachr 4:213–231MathSciNetCrossRefzbMATHGoogle Scholar
  43. Ingram R (2013a) A new linearly extrapolated Crank-Nicolson time-stepping scheme for the Navier-Stokes equations. Math Comp 82:1953–1973MathSciNetCrossRefzbMATHGoogle Scholar
  44. Ingram R (2013b) Unconditional convergence of high-order extrapolations of the Crank-Nicolson, finite element method for the Navier-Stokes equations. Int J Numer Anal Model 10:257–297MathSciNetzbMATHGoogle Scholar
  45. John V (2006) On the efficiency of linearization schemes and coupled multigrid methods in the simulation of a 3D flow around a cylinder. Int J Numer Methods Fluids 50:845–862MathSciNetCrossRefzbMATHGoogle Scholar
  46. John V, Layton WJ (2002) Analysis of numerical errors in large eddy simulation. SIAM J Numer Anal 40:995–1020MathSciNetCrossRefzbMATHGoogle Scholar
  47. John V, Novo J (2015) Analysis of the pressure stabilized Petrov-Galerkin method for the evolutionary Stokes equations avoiding time step restrictions. SIAM J Numer Anal 53:1005–1031MathSciNetCrossRefzbMATHGoogle Scholar
  48. John V, Rang J (2010) Adaptive time step control for the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 199:514–524MathSciNetCrossRefzbMATHGoogle Scholar
  49. John V, Matthies G, Rang J (2006a) A comparison of time-discretization/linearization approaches for the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 195:5995–6010MathSciNetCrossRefzbMATHGoogle Scholar
  50. John V, Layton W, Manica CC (2007) Convergence of time-averaged statistics of finite element approximations of the Navier-Stokes equations. SIAM J Numer Anal 46:151–179MathSciNetCrossRefzbMATHGoogle Scholar
  51. Kay DA, Gresho PM, Griffiths DF, Silvester DJ (2010) Adaptive time-stepping for incompressible flow. II. Navier-Stokes equations. SIAM J Sci Comput 32:111–128MathSciNetCrossRefzbMATHGoogle Scholar
  52. Klouček P, Rys FS (1994) Stability of the fractional step Θ-scheme for the nonstationary Navier-Stokes equations. SIAM J Numer Anal 31:1312–1335MathSciNetCrossRefzbMATHGoogle Scholar
  53. Leray J (1933) Étude de diverses équations intégrales non linéaires et de quelques problèmes de l’hydrodynamique. J Math Pures Appl (9) 12:1–82Google Scholar
  54. Leray J (1934a) Essai sur les mouvements plans d’une liquide visqueux que limitent des parois. J Math Pures Appl (9) 13:331–418Google Scholar
  55. Leray J (1934b) Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63:193–248MathSciNetCrossRefGoogle Scholar
  56. Marion M, Temam R (1998) Navier-Stokes equations: theory and approximation. In: Handbook of numerical analysis, vol VI. North-Holland, Amsterdam, pp 503–688Google Scholar
  57. Müller-Urbaniak S (1993) Eine Analyse des Zwischenschritt-θ-Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen. PhD thesis, Univ. Heidelberg, Naturwiss.-Math. Gesamtfak., Heidelberg, pp. 78Google Scholar
  58. Prohl A (1997) Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations. Advances in numerical mathematics. B. G. Teubner, Stuttgart, pp xiv+294Google Scholar
  59. Rang J (2008) Pressure corrected implicit θ-schemes for the incompressible Navier-Stokes equations. Appl Math Comput 201:747–761MathSciNetzbMATHGoogle Scholar
  60. Rannacher R (1992) On Chorin’s projection method for the incompressible Navier-Stokes equations. In: The Navier-Stokes equations II—theory and numerical methods (Oberwolfach, 1991). Lecture notes in mathematics, vol 1530. Springer, Berlin, pp 167–183Google Scholar
  61. Serrin J (1963) The initial value problem for the Navier-Stokes equations. In: Nonlinear problems (proceedings of the sympos., Madison, WI, 1962). University of Wisconsin Press, Madison, WI, pp 69–98Google Scholar
  62. Shen J (1992a) On error estimates of projection methods for Navier-Stokes equations: first-order schemes. SIAM J Numer Anal 29:57–77MathSciNetCrossRefzbMATHGoogle Scholar
  63. Shen J (1992b) On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations. Numer Math 62:49–73MathSciNetCrossRefzbMATHGoogle Scholar
  64. Shen J (1996) On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes. Math Comp 65:1039–1065MathSciNetCrossRefzbMATHGoogle Scholar
  65. Sohr H (1983) Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math Z 184:359–375MathSciNetCrossRefzbMATHGoogle Scholar
  66. Sohr H (2001) The Navier-Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, pp x+367Google Scholar
  67. Tabata M, Tagami D (2000) Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows. Jpn J Ind Appl Math 17:371–389MathSciNetCrossRefzbMATHGoogle Scholar
  68. Témam R (1969) Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Arch Ration Mech Anal 33:377–385CrossRefzbMATHGoogle Scholar
  69. Temam R (1982) Behaviour at time t = 0 of the solutions of semilinear evolution equations. J Differ Equ 43:73–92MathSciNetCrossRefzbMATHGoogle Scholar
  70. Temam R (1984) Navier-Stokes equations. Theory and numerical analysis. Studies in mathematics and its applications, vol 2, 3rd edn. North-Holland Publishing Co., Amsterdam, pp xii+526. With an appendix by F. ThomassetGoogle Scholar
  71. Timmermans L, Minev P, van de Vosse F (1996) An approximate projection scheme for incompressible flow using spectral elements. Int J Numer Methods Fluids 22:673–688MathSciNetCrossRefzbMATHGoogle Scholar
  72. Turek S (1999) Efficient solvers for incompressible flow problems. An algorithmic and computational approach. Lecture notes in computational science and engineering, vol 6. Springer, Berlin, pp xvi+352. With 1 CD-ROM (“Virtual Album”: UNIX/LINUX, Windows, POWERMAC; “FEATFLOW 1.1”: UNIX/LINUX)Google Scholar
  73. van Kan J (1986) A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J Sci Stat Comput 7:870–891MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Volker John
    • 1
    • 2
  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  2. 2.Fachbereich Mathematik und InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations