The Steady-State Navier–Stokes Equations

  • Volker John
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 51)


The steady-state or stationary Navier–Stokes equations describe steady-state flows. Such flow fields can be expected in practice if:
  • all data of the Navier–Stokes equations ( 2.25) do not depend on the time,

  • the viscosity ν is sufficiently large, or equivalently, the Reynolds number Re is sufficiently small,

see Remark  2.22.


  1. Arndt D, Dallmann H, Lube G (2015) Local projection FEM stabilization for the time-dependent incompressible Navier-Stokes problem. Numer Methods Partial Differ Equ 31:1224–1250MathSciNetCrossRefzbMATHGoogle Scholar
  2. Aubin J-P (1967) Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Gelerkin’s and finite difference methods. Ann Scuola Norm Sup Pisa (3) 21:599–637Google Scholar
  3. Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. Lectures in mathematics ETH Zürich. Birkhäuser Verlag, Basel, pp viii+207Google Scholar
  4. Becker R (2000) An optimal-control approach to a posteriori error estimation for finite element discretizations of the Navier-Stokes equations. East-West J Numer Math 8:257–274MathSciNetzbMATHGoogle Scholar
  5. Becker R, Rannacher R (1996) A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J Numer Math 4:237–264MathSciNetzbMATHGoogle Scholar
  6. Becker R, Rannacher R (1998) Weighted a posteriori error control in FE methods. In: Bock HG, Kanschat G, Rannacher R, Brezzi F, Glowinski R, Kuznetsov YA, Périaux J (eds) ENUMATH 97. Proceedings of the 2nd European conference on numerical mathematics and advanced applications held at the University of Heidelberg, Heidelberg, September 28–October 3, 1997. World Scientific Publishing Co., Inc., River Edge, NJ, pp 621–637Google Scholar
  7. Becker R, Rannacher R (2001) An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer 10:1–102MathSciNetCrossRefzbMATHGoogle Scholar
  8. Besier M, Rannacher R (2012) Goal-oriented space-time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow. Int J Numer Methods Fluids 70:1139–1166MathSciNetCrossRefGoogle Scholar
  9. Braack M, Mucha PB (2014) Directional do-nothing condition for the Navier-Stokes equations. J Comput Math 32:507–521MathSciNetCrossRefzbMATHGoogle Scholar
  10. Galdi GP (2011) An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems. Springer monographs in mathematics, 2nd edn. Springer, New York, pp xiv+1018Google Scholar
  11. Girault V, Raviart P-A (1986) Finite element methods for Navier-Stokes equations. Theory and algorithms. Springer series in computational mathematics, vol 5. Springer, Berlin, pp x+374Google Scholar
  12. John V (2000) A numerical study of a posteriori error estimators for convection-diffusion equations. Comput Methods Appl Mech Eng 190:757–781MathSciNetCrossRefzbMATHGoogle Scholar
  13. John V, Matthies G (2001) Higher-order finite element discretizations in a benchmark problem for incompressible flows. Int J Numer Methods Fluids 37:885–903CrossRefzbMATHGoogle Scholar
  14. John V, Tabata M, Tobiska L (1998) Error estimates for nonconforming finite element approximations of drag and lift in channel flows. Preprint 3/98. Fakultät für Mathematik, Otto-von-Guericke-Universität MagdeburgGoogle Scholar
  15. Layton W, Tobiska L (1998) A two-level method with backtracking for the Navier-Stokes equations. SIAM J Numer Anal 35:2035–2054 (electronic)Google Scholar
  16. Nitsche J (1968) Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer Math 11:346–348MathSciNetCrossRefzbMATHGoogle Scholar
  17. Olshanskii MA (2002) A low order Galerkin finite element method for the Navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods. Comput Methods Appl Mech Eng 191:5515–5536MathSciNetCrossRefzbMATHGoogle Scholar
  18. Rockel S (2013) Über Formen des konvektiven Terms in Finite–Elemente–Diskretisierungen der inkompressiblen Navier–Stokes–Gleichungen. Diplomarbeit, Freie Universität BerlinGoogle Scholar
  19. Temam R (1984) Navier-Stokes equations. Theory and numerical analysis. Studies in mathematics and its applications, vol 2, 3rd edn. North-Holland Publishing Co., Amsterdam, pp xii+526. With an appendix by F. ThomassetGoogle Scholar
  20. Verfürth R (2013) A posteriori error estimation techniques for finite element methods. Numerical mathematics and scientific computation. Oxford University Press, Oxford, pp xx+393Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Volker John
    • 1
    • 2
  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  2. 2.Fachbereich Mathematik und InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations