Skip to main content

The Stokes Equations

  • Chapter
  • First Online:
  • 3258 Accesses

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 51))

Abstract

The Stokes equations model the simplest incompressible flow problems. These problems are steady-state and the convective term can be neglected. Hence, the arising model is linear. Thus, the only difficulty which remains from the problems mentioned in Remark 2.19 is the coupling of velocity and pressure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    2D graphics were plotted with Matplotlib, Hunter (2007), http://matplotlib.org.

References

  • Acosta G, Durán RG (1999) The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations. SIAM J Numer Anal 37:18–36 (electronic)

    Google Scholar 

  • Adams RA (1975) Sobolev spaces. Pure and applied mathematics, vol 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York/London, pp xviii+268

    Google Scholar 

  • Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Pure and applied mathematics (New York). Wiley-Interscience [Wiley], New York, pp xx+240

    Google Scholar 

  • Arnold D, Qin J (1992) Quadratic velocity/linear pressure Stokes elements. In: Vichnevetsky R, Knight D, Richter G (eds) Advances in computer methods for partial differential equations VII. IMACS, New Brunswick, pp 28–34

    Google Scholar 

  • Aubin J-P (1967) Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Gelerkin’s and finite difference methods. Ann Scuola Norm Sup Pisa (3) 21:599–637

    Google Scholar 

  • Barrenechea GR, Valentin F (2010a) Consistent local projection stabilized finite element methods. SIAM J Numer Anal 48:1801–1825

    Article  MathSciNet  MATH  Google Scholar 

  • Barrenechea GR, Valentin F (2010b) A residual local projection method for the Oseen equation. Comput Methods Appl Mech Eng 199:1906–1921

    Article  MathSciNet  MATH  Google Scholar 

  • Barrenechea GR, Valentin F (2011) Beyond pressure stabilization: a low-order local projection method for the Oseen equation. Int J Numer Methods Eng 86:801–815

    Article  MathSciNet  MATH  Google Scholar 

  • Barth T, Bochev P, Gunzburger M, Shadid J (2004) A taxonomy of consistently stabilized finite element methods for the Stokes problem. SIAM J Sci Comput 25:1585–1607

    Article  MathSciNet  MATH  Google Scholar 

  • Becker R, Braack M (2001) A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38:173–199

    Article  MathSciNet  MATH  Google Scholar 

  • Bochev P, Gunzburger M (2004) An absolutely stable pressure-Poisson stabilized finite element method for the Stokes equations. SIAM J Numer Anal 42:1189–1207

    Article  MathSciNet  MATH  Google Scholar 

  • Bochev PB, Dohrmann CR, Gunzburger MD (2006) Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J Numer Anal 44:82–101 (electronic)

    Google Scholar 

  • Boffi D, Brezzi F, Fortin M (2013) Mixed finite element methods and applications. Springer series in computational mathematics, vol 44. Springer, Heidelberg, pp xiv+685

    Google Scholar 

  • Bowers AL, Le Borne S, Rebholz LG (2014) Error analysis and iterative solvers for Navier-Stokes projection methods with standard and sparse grad-div stabilization. Comput Methods Appl Mech Eng 275:1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Brennecke C, Linke A, Merdon C, Schöberl J (2015) Optimal and pressure-independent L 2 velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions. J Comput Math 33:191–208

    Article  MathSciNet  MATH  Google Scholar 

  • Brenner SC (2003) Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J Numer Anal 41:306–324

    Article  MathSciNet  MATH  Google Scholar 

  • Brezzi F, Douglas J Jr (1988) Stabilized mixed methods for the Stokes problem. Numer Math 53:225–235

    Article  MathSciNet  MATH  Google Scholar 

  • Brezzi F, Fortin M (2001) A minimal stabilisation procedure for mixed finite element methods. Numer Math 89:457–491

    Article  MathSciNet  MATH  Google Scholar 

  • Brezzi F, Pitkäranta J (1984) On the stabilization of finite element approximations of the Stokes equations. In: Efficient solutions of elliptic systems (Kiel, 1984). Notes Numerical Fluid Mechanics, vol 10. Friedr. Vieweg, Braunschweig, pp 11–19

    Google Scholar 

  • Bychenkov YV, Chizonkov EV (1999) Optimization of one three-parameter method of solving an algebraic system of the Stokes type. Russ J Numer Anal Math Modell 14:429–440

    Article  MathSciNet  MATH  Google Scholar 

  • Case MA, Ervin VJ, Linke A, Rebholz LG (2011) A connection between Scott-Vogelius and grad-div stabilized Taylor-Hood FE approximations of the Navier-Stokes equations. SIAM J Numer Anal 49:1461–1481

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarlet PG (1978) The finite element method for elliptic problems. Studies in mathematics and its applications, vol 4. North-Holland Publishing Co., Amsterdam, pp xix+530

    Google Scholar 

  • Clough R, Tocher J (1965) Finite element stiffness matrices for analysis of plates in bending. In: Proceedings of the conference on matrix methods in structural mechanics. Wright Patterson A.F.B., OH, pp 515–545

    Google Scholar 

  • Codina R, Blasco J (1997) A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput Methods Appl Mech Eng 143:373–391

    Article  MathSciNet  MATH  Google Scholar 

  • Codina R, Blasco J (2000) Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations. Numer Math 87:59–81

    Article  MathSciNet  MATH  Google Scholar 

  • Dari E, Durán R, Padra C (1995) Error estimators for nonconforming finite element approximations of the Stokes problem. Math Comp 64:1017–1033

    Article  MathSciNet  MATH  Google Scholar 

  • Dauge M (1989) Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations. SIAM J Math Anal 20:74–97

    Article  MathSciNet  MATH  Google Scholar 

  • Dohrmann CR, Bochev PB (2004) A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int J Numer Methods Fluids 46:183–201

    Article  MathSciNet  MATH  Google Scholar 

  • Douglas J Jr, Wang JP (1989) An absolutely stabilized finite element method for the Stokes problem. Math Comp 52:495–508

    Article  MathSciNet  MATH  Google Scholar 

  • Ern A, Guermond J-L (2004) Theory and practice of finite elements. Applied mathematical sciences, vol 159. Springer, New York, pp xiv+524

    Google Scholar 

  • Evans LC (2010) Partial differential equations. Graduate studies in mathematics, vol 19, 2nd edn. American Mathematical Society, Providence, RI, pp xxii+749

    Google Scholar 

  • Falk RS, Neilan M (2013) Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J Numer Anal 51:1308–1326

    Article  MathSciNet  MATH  Google Scholar 

  • Franca LP, Hughes TJR (1988) Two classes of mixed finite element methods. Comput Methods Appl Mech Eng 69:89–129

    Article  MathSciNet  MATH  Google Scholar 

  • Franca LP, Hughes TJR, Stenberg R (1993) Stabilized finite element methods. In: Incompressible computational fluid dynamics: trends and advances. Cambridge University Press, Cambridge, pp 87–107

    Chapter  Google Scholar 

  • Galvin KJ, Linke A, Rebholz LG, Wilson NE (2012) Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection. Comput Methods Appl Mech Eng 237/240:166–176

    Article  MathSciNet  MATH  Google Scholar 

  • Gelhard T, Lube G, Olshanskii MA, Starcke J-H (2005) Stabilized finite element schemes with LBB-stable elements for incompressible flows. J Comput Appl Math 177:243–267

    Article  MathSciNet  MATH  Google Scholar 

  • Girault V, Scott LR (2003) A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40:1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Glowinski R, Le Tallec P (1989) Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. SIAM studies in applied mathematics, vol 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, pp x+295

    Google Scholar 

  • Guzmán J, Neilan M (2014) Conforming and divergence-free Stokes elements on general triangular meshes. Math Comp 83:15–36

    Article  MathSciNet  MATH  Google Scholar 

  • Hansbo P, Szepessy A (1990) A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 84:175–192

    Article  MathSciNet  MATH  Google Scholar 

  • Heister T, Rapin G (2013) Efficient augmented Lagrangian-type preconditioning for the Oseen problem using grad-div stabilization. Int J Numer Methods Fluids 71:118–134

    Article  MathSciNet  Google Scholar 

  • Hughes TJR, Franca LP (1987) A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput Methods Appl Mech Eng 65:85–96

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99

    Article  MathSciNet  MATH  Google Scholar 

  • Hunter J (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95

    Article  Google Scholar 

  • Jenkins EW, John V, Linke A, Rebholz LG (2014) On the parameter choice in grad-div stabilization for the Stokes equations. Adv Comput Math 40:491–516

    Article  MathSciNet  MATH  Google Scholar 

  • John V, Linke A, Merdon C, Neilan M, Rebholz LG (2016) On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Review (in press)

    Google Scholar 

  • Kellogg RB, Osborn JE (1976) A regularity result for the Stokes problem in a convex polygon. J Funct Anal 21:397–431

    Article  MathSciNet  MATH  Google Scholar 

  • Knobloch P (2001) Uniform validity of discrete Friedrichs’ inequality for general nonconforming finite element spaces. Numer Funct Anal Optim 22:107–126

    Article  MathSciNet  MATH  Google Scholar 

  • Král J, Wendland W (1986) Some examples concerning applicability of the Fredholm-Radon method in potential theory. Apl. Mat. 31:293–308

    MathSciNet  MATH  Google Scholar 

  • Lederer PL (2016) Pressure Robust Discretizations for Navier Stokes Equations: Divergence-free Reconstruction for Taylor-Hood Elements and High Order Hybrid Discontinuous Galerkin Methods. Diplomarbeit, Technische Universität Wien

    Google Scholar 

  • Linke A (2014) On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput Methods Appl Mech Eng 268:782–800

    Article  MathSciNet  MATH  Google Scholar 

  • Linke A, Merdon C, Wollner W (2016a) Optimal L 2 velocity error estimate for a modified pressure-robust Crouzeix–Raviart Stokes element. IMA J Numer Anal (in press)

    Google Scholar 

  • Linke A, Matthies G, Tobiska L (2016b) Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors. ESAIM Math Model Numer Anal 50:289–309

    Article  MathSciNet  MATH  Google Scholar 

  • Neilan M (2015) Discrete and conforming smooth de Rham complexes in three dimensions. Math Comp 84:2059–2081

    Article  MathSciNet  MATH  Google Scholar 

  • Nitsche J (1968) Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer Math 11:346–348

    Article  MathSciNet  MATH  Google Scholar 

  • Olshanskii MA (2002) A low order Galerkin finite element method for the Navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods. Comput Methods Appl Mech Eng 191:5515–5536

    Article  MathSciNet  MATH  Google Scholar 

  • Olshanskii MA, Reusken A (2004) Grad-div stabilization for Stokes equations. Math Comp 73:1699–1718

    Article  MathSciNet  MATH  Google Scholar 

  • Olshanskii M, Lube G, Heister T, Löwe J (2009) Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 198:3975–3988

    Article  MathSciNet  MATH  Google Scholar 

  • Qin J (1994) On the convergence of some low order mixed finite elements for incompressible fluids. PhD thesis, Department of Mathematics, Pennsylvania State University

    Google Scholar 

  • Roos H-G, Stynes M, Tobiska L (2008) Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems. Springer series in computational mathematics, vol 24, 2nd edn. Springer, Berlin, pp xiv+604

    Google Scholar 

  • Scott LR, Zhang S (1990) Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comp 54:483–493

    Article  MathSciNet  MATH  Google Scholar 

  • Tobiska L, Verfürth R (1996) Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J Numer Anal 33:107–127

    Article  MathSciNet  MATH  Google Scholar 

  • Vassilevski PS, Lazarov RD (1996) Preconditioning mixed finite element saddle-point elliptic problems. Numer Linear Algebra Appl 3:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Verchota GC, Vogel AL (2003) A multidirectional Dirichlet problem. J Geom Anal 13:495–520

    Article  MathSciNet  MATH  Google Scholar 

  • Verfürth R (1989) A posteriori error estimators for the Stokes equations. Numer Math 55:309–325

    Article  MathSciNet  MATH  Google Scholar 

  • Verfürth R (1994) A posteriori error estimation and adaptive mesh-refinement techniques. J Comput Appl Math 50:67–83

    Article  MathSciNet  MATH  Google Scholar 

  • Verfürth R (2013) A posteriori error estimation techniques for finite element methods. Numerical mathematics and scientific computation. Oxford University Press, Oxford, pp xx+393

    Google Scholar 

  • Zhang S (2005) A new family of stable mixed finite elements for the 3D Stokes equations. Math Comp 74:543–554

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S (2009) Bases for C0-P1 divergence-free elements and for C1-P2 finite elements on union jack grids. http://www.math.udel.edu/~szhang/research/p/uj.pdf. Accessed 20 July 2016

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

John, V. (2016). The Stokes Equations. In: Finite Element Methods for Incompressible Flow Problems. Springer Series in Computational Mathematics, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-319-45750-5_4

Download citation

Publish with us

Policies and ethics